Bee产品长期以来一直在古代(埃及,希腊和中国)中用于医学。目前,Bee产品(Prop-Olis,Bee Pollen,Royal Jelly,Bee Wax,Bee Pollen)被接受作为替代药物,其应用是指组成和替代药物(CAM)(Sun Yi等,1988)。作为先前的研究,蜜蜂花粉中的类黄酮具有抗氧化活性,被认为是能够通过抑制氧化应激而降低血清葡萄糖水平的化合物(Gheldof N等,Gheldof N等,2002; Goth L,1991)。此外,蜜蜂花粉的抗氧化剂活性可以改善胰岛素耐药条件下的胰岛素受体。因此,可以提高胰岛素的敏感性(Koracevic D等,2001)。因此,本研究中使用的蜜蜂花粉来自Kelulut Bees(Trigona SP)。kelulut蜜蜂是小蜜蜂,尾巴上没有刺痛。kelulut蜜蜂在东加利曼丹森林中发现。Bee Kelulut的优势是它产生的蜜蜂花粉比其他类型的蜜蜂多。
1 佛罗里达大学电气与计算机工程系,佛罗里达州盖恩斯维尔 32611,2 佛罗里达大学呼吸研究与治疗中心,佛罗里达州盖恩斯维尔 32611,3 佛罗里达大学物理治疗系,佛罗里达州盖恩斯维尔 32611,4 佛罗里达大学生理学与功能基因组学系,佛罗里达州盖恩斯维尔 32611,5 佛罗里达大学生物统计学系,佛罗里达州盖恩斯维尔 32611,6 佛罗里达大学麦克奈特脑研究所,佛罗里达州盖恩斯维尔 32611,7 佛罗里达大学 J. Crayton Pruitt 家族生物医学工程系,佛罗里达州盖恩斯维尔 32611,8 佛罗里达大学材料科学与工程系,佛罗里达州盖恩斯维尔 32611,9 佛罗里达大学神经病学系,佛罗里达州盖恩斯维尔 32611,10 佛罗里达大学神经科学系,佛罗里达大学,佛罗里达州盖恩斯维尔 32611
摘要:糖尿病是一种严重危害人类健康的慢性代谢疾病。各种研究都强调了维持大脑充足的葡萄糖供应并随后保障大脑葡萄糖代谢的重要性。本研究的目的是阐明和揭示长期高血糖背景下反复低血糖引起的代谢改变,以进一步了解除大脑损害之外的影响。为此,化学诱发的糖尿病大鼠经历了反复胰岛素诱发的低血糖发作。通过分光光度法测量了大脑皮层组织提取物或分离的线粒体中糖酵解、戊糖磷酸途径和克雷布斯循环的关键酶的活性。使用蛋白质印迹分析来测定葡萄糖和单羧酸转运蛋白的蛋白质含量,它们是胰岛素信号通路和线粒体生物合成和动力学的参与者。我们观察到复发性低血糖会上调线粒体己糖激酶和克雷布斯循环酶(即丙酮酸脱氢酶、α-酮戊二酸脱氢酶和琥珀酸脱氢酶)的活性以及线粒体转录因子 A (TFAM) 的蛋白水平。这两种损伤都会增加核因子红细胞 2 相关因子 2 (NRF2) 的蛋白含量,并引起线粒体动力学的不同影响。发现胰岛素信号下游通路被下调,并且发现糖原合酶激酶 3 beta (GSK3 β ) 通过 Ser9 磷酸化降低和 Y216 磷酸化增加而被激活。有趣的是,低血糖和/或高血糖不会导致在神经元可塑性和记忆中起关键作用的 cAMP 反应元件结合蛋白 (CREB) 水平发生变化。这些发现提供了实验证据,表明在慢性高血糖的情况下,复发性低血糖能够引发大脑皮层的协调适应性反应,最终有助于维持脑细胞健康。
摘要:由于记录技术的限制,神经接口通常只能同时关注运动神经元系统中的一两个位点,从而限制了该系统的观察和发现范围。在此,我们构建了一个具有各种电极的系统,能够记录来自自由运动动物的皮层、脊髓、周围神经和肌肉的大量电生理信号。该系统将可调节微阵列、浮动微阵列和微线集成到无线发射器上的商用连接器和袖口电极上。为了说明该系统的多功能性,我们研究了其在啮齿动物在系绳跑步机上行走、不受束缚的轮子跑步和野外探索过程中的行为表现。结果表明,该系统稳定且适用于多种行为条件,并且可以提供数据来支持以前无法获得的神经损伤、康复、脑启发计算和基础神经科学研究。
机械载荷通常被认为对骨架有积极影响。但是,并非所有类型的机械负载都具有相同的有益效果。许多RE搜索者已经研究了哪种机械负荷对于改善骨骼和强度更有效。在各种机械载荷中,高影响力负载(例如跳跃)似乎比步行,跑步或游泳之类的低影响负荷更为有益。因此,通过跑步,游泳和跳跃练习施加的不同形式的机械加载可能对骨骼适应有不同的影响。然而,关于机械负荷类型及其对小梁骨结构的影响之间的关系知之甚少。本文的PUR姿势是回顾有关跑步机跑步,跳跃和游泳对小动物小梁骨微体系结构的影响的最新报告。在这些不同的练习中,负荷对小梁骨结构的影响似乎有所不同,因为几份报告表明,跳跃通过增强小梁来增加小梁骨质量,而跑步机和游泳则通过增加小径的数量而不是厚度,而不是厚度。这表明不同类型的运动通过小动物的不同建筑模式促进小梁骨质量的增长。
1. 正确识别啮齿动物,并通过诱导室(用于异氟烷)或钟罩(用于甲氧氟烷)用蒸气麻醉诱导麻醉 (**) 2. 麻醉后,检查动物是否处于适当的麻醉深度,然后从麻醉输送装置中收集动物并将其放置在能够轻轻抑制头部的位置。当适当麻醉时,啮齿动物已失去翻正反射和缩腿反射。 3. 将移液器尖端的末端放在啮齿动物的鼻孔附近 4. 缓慢推动柱塞,在移液器尖端形成小液滴 5. 将液滴放在啮齿动物的鼻孔附近,让啮齿动物吸入溶液 6. 重复上述步骤以清除剩余体积,每吸入一滴,交替换一个鼻孔
应用于产生基因组编辑的大鼠,包括白化病sprague-dawley和白化病刘易斯大鼠(但是,不是有色的棕色挪威[bn]大鼠)。我们观察到成功的I -Gonad取决于所使用的小鼠菌株。例如,在随机繁殖小鼠(例如ICR和C3H/HE×C57BL/6)中,它在相对严格的电气条件下成功,但在C57BL/6菌株中却没有成功。在不太严格的条件下,I -Gonad在C57BL/6菌株中取得了成功。我们推测使用BN大鼠对I -Gonad也是如此。在应用> 500 mA的电流时,我们未能获得大鼠后代(胎儿/新生儿);但是,使用NEPA21(NEPA基因)在100-300 Ma下I-Gonad导致基因组编辑的BN大鼠的产生,其效率为75%-100%。同样,使用CUY21EDIT II(BEX Co.)在150-200 Ma的电流下,I-Gonad导致基因组编辑的BN大鼠的产生,其效率为24%-55%。这些实验表明,在执行I -Gonad时,根据所使用的大鼠菌株选择适当的电流值的重要性。
摘要 MAD7 是从直肠真杆菌中分离出来的一种工程化的 2 类 VA 型 CRISPR-Cas (Cas12a/Cpf1) 系统。与 Cas9 类似,它是一种 RNA 引导的核酸酶,在大肠杆菌和酵母细胞中具有基因编辑活性。本文报告称,MAD7 能够分别在人类 HCT116 和 U2OS 癌细胞系中产生内源基因的插入/缺失和荧光基因标记。此外,MAD7 非常擅长在小鼠和大鼠胚胎中产生插入/缺失、小 DNA 插入(23 个碱基)和 1 至 14 kb 大小的较大整合,从而产生活产转基因动物。由于不同的原间隔区相邻基序要求、小引导 RNA 和高效的靶向基因破坏和插入,MAD7 可以扩展 CRISPR 工具箱,用于跨不同系统和模型生物进行基因组工程。
摘要 配对联想刺激 (PAS) 已被用于人类,作为一种非侵入性工具来驱动可塑性并促进神经损伤后的恢复。需要更彻底地了解 PAS 诱导的可塑性,以充分利用它作为临床工具。在这里,我们在清醒大鼠模型中测试了具有多个刺激间隔的 PAS 的有效性,以研究联想可塑性的原理。通过在运动皮层和前肢长期植入电极,我们探索了 PAS 参数以有效驱动可塑性。我们使用闭环 EMG 控制的皮质刺激范式评估了皮质运动兴奋性的变化。我们测试了 11 个 PAS 间隔,选择这些间隔来强制大鼠运动皮层和脊髓中的神经元活动与与赫布尖峰时间依赖性可塑性原理相关的时间相一致。然而,尽管刺激配对数量相对较多(300),但没有一个测试间隔能够可靠地改变皮质脊髓兴奋性相对于控制条件。我们的研究结果对这些条件下 PAS 的有效性提出了质疑。
摘要抽象游戏是正常儿童发展的重要组成部分,可以在实验室大鼠中以粗糙和翻滚游戏的形式进行研究。鉴于粗糙和翻滚游戏的强大性质,经常假定基底神经节在调节这种行为方面将具有重要的作用。最近使用C -FOS表达作为神经活动的代谢标记的最近工作,结合了相关皮质层状区域的暂时失活以及阿片类药物,大麻素和多巴胺系统的药理学操纵,从而更好地理解了基础神经节电路如何与Junevenile rap的调制社交效果有关。使用选择性游戏剥夺的研究也提供了对嬉戏体验对基底神经节功能的后果的见解。本文审查的数据支持基底神经节在社交游戏中的角色,还表明皮质纹状体功能也受益于嬉戏的活动。