$ 750,000/$ 60,000(PVAMU)。铅pi:N。Duffied(Tamu-Corpus Christi),Co-Pi-Ram Ray。2023。3。USDA-NIFA:合作伙伴关系:阐明硅生物地球化学循环以改善植物生物量,气候胁迫耐受性和CO 2隔离。预算:$ 800,000/$ 180,928(PVAMU)。Lead Pi:A。Khan(休斯顿大学),Co -Pi -Ram Ray。2023。4。USDA-NIFA:开发从工业大麻中的可持续气候智能生物基生产产品。预算:$ 1,000,000/500,000(UH)。pi:Aruna Weerasooriya,Co-Pi - Ram Ray。2023 5。NSF:微生物组是否有助于植物逃避洪水应力因素?预算:$ 800,00/$ 201,342(PVAMU)。Lead Pi:A。Khan(休斯顿大学),Co -Pi -Ram Ray。2023。6。DOD:基于高级计算的卓越中心,基于高级计算的环境意识智能系统(访问)。预算:$ 9,896,187。pi:suxia cui,Co-Pi - Ram Ray。2023 7。NSF:卓越的研究:研究根诱导土壤液压特性变化的研究。预算:$ 547,720。pi:md。J.B. Alam,Co-Pi - Ram Ray。 2022J.B. Alam,Co-Pi - Ram Ray。2022
UCH引擎盖还旨在撤离与大型蒸汽生产设备一起使用时可能在其内部容积内形成的冷凝滴。引擎盖配备了安装在容积量的所有四个侧面上的排水沟系统。该系统收集从侧面流动的水滴和引擎盖的天花板,其钻石点的形状有助于其流动。这些规定通过限制降温滴落的风险
摘要X/γ-砂在实验室天体物理学和粒子物理学中具有许多潜在的应用。已经提出了几种具有角动量(AM)的电子,正电子和X/γ-光子束的方法,但超强度的亮γ射线的产生仍然具有挑战性。在这里,我们提出了一个全光方案,以产生具有大型束角动量(BAM),小差异和高光彩的高能量γ-光束。在第一个阶段,强度为10 22 W/cm 2的圆形极化激光脉冲辐射一个微通道目标,从通道壁上拖出电子,并通过纵向电力场将它们加速到高能。在此过程中,激光将其自旋角动量(SAM)转移到电子轨道角动量(OAM)。在第二阶段,驱动脉冲通过附着的风扇翼反映,因此形成了涡流激光脉冲。在第三阶段,能量电子与反射的涡流脉冲正面碰撞,并通过非线性康普顿散射将其AM传递到γ-播种。三维粒子中的模拟表明,γ射线束的峰值光彩为〜10 22
抽象引入囊性纤维化(CF)是一种限制生命的常染色体隐性遗传条件。它是由编码氯化物和碳酸氢盐传统通道的基因突变引起的。X射线速度法(XV)是一种新型的X射线成像形式,可以通过呼吸周期生成肺通风数据。XV技术已在多种动物模型中得到验证,包括CF肺疾病的β -ENAC小鼠模型。此后在成人人类受试者的早期临床试验中进行了评估。但是,小儿队列中的数据很少,包括CF。这项试验研究的目的是研究对CF的儿科患者以及患有正常肺部的患者进行单中心队列研究的可行性,以证明在这些队列中对XV进行进一步研究的适当性。方法和分析这是一项横截面单中心,试点研究。进行XV肺成像以及配对的肺功能测试将招募3-18岁的儿童。该研究的目的是招募20名没有CF的儿童,患有正常肺和20名CF儿童。主要结果将是招募儿童和进行XV测试的可行性。次要结果将包括XV与肺功能和结构的当前评估之间的比较。道德和传播该项目获得了妇女和儿童医院人类研究伦理委员会授予的伦理批准(HREC ID 2021/ HRE00396)。发现将通过同行评审的出版和会议来传播。试用注册号ACTRN12623000109606。
摘要 X/γ 射线在实验室天体物理和粒子物理中有许多潜在的应用。尽管已经提出了几种方法来产生具有角动量(AM)的电子、正电子和 X/γ 光子束,但产生超强明亮的 γ 射线仍然具有挑战性。本文提出了一种全光学方案来产生具有大光束角动量(BAM)、小发散度和高亮度的高能 γ 光子束。在第一阶段,强度为 10 22 W/cm 2 的圆偏振激光脉冲照射微通道靶,从通道壁拖出电子,并通过纵向电场将其加速到高能量。在此过程中,激光将其自旋角动量(SAM)转换为电子的轨道角动量(OAM)。在第二阶段,驱动脉冲被附着的扇形箔反射,从而形成涡旋激光脉冲。在第三阶段,高能电子与反射的涡旋脉冲正面碰撞,并通过非线性康普顿散射将其 AM 转移到 γ 光子。三维粒子模拟表明,γ 射线束的峰值亮度约为 10 22
图1:左:使用我们的方法呈现的修改后的康奈尔盒,使用每个像素的32个路径(结构噪声是由于量子计算模拟的局限性引起的)。中心:错误收敛图。我们使用量子射线行进(蓝色)的量子光传输模拟比古典蒙特卡洛(MC)渲染(绿色)快地收敛。右:在每个弹跳分支分为两者之间如何在两者之间采样光传输路径的图。古典MC(顶部)将一次访问一个随机的光传输路径,需要几个样本(以不同的颜色显示),以忠实涵盖所有可能的轻型运输路径。由于量子计算的指数性质,我们的量子方法中的量子状态在一个量子估计中捕获了所有指数的光传输路径(底部)。
我们仍将面临不同群体之间的冲突,而每一种冲突都会因人工智能而加剧。这已经是事实。但我们可以从暴力事件的大幅、指数级下降中获得一些安慰,正如史蒂芬·平克 2011 年出版的《人性中的善良天使:暴力为何减少》一书中所记录的那样。据平克称,尽管各个地方的统计数据略有不同,但与六个世纪前相比,战争死亡率下降了数百倍。
3.11 环境管理(污染控制、生物多样性、景观和海岸保护)...................................................................................................................... 197
摘要 — 我们研究了无线电信道模拟器在预测特定环境中的信道响应方面的可靠性。已知表面几何布局和材料特性的室内环境适合进行这种特定场地的模拟。我们通过将其预测与特定静态环境中的测量值进行比较来评估该方法的性能。在测量和模拟的一组路径上,路径损耗、Ricean K 因子和 RMS 延迟扩展具有良好的一致性,这表明可以使用设计良好的无线电模拟器可靠地预测系统行为。通常,通过这种或类似技术获得的无线信道模型不会捕捉由于环境中人员移动而导致的信道响应的时间变化。我们使用随机过程处理信道响应的时变部分。通过对几种典型办公场景进行信道探测实验,我们表明自回归过程可用于为几种不同的运动场景建模随时间变化的抽头增益。
摘要 — 量子计算有可能为许多具有挑战性或超出传统计算机能力的问题提供解决方案。渲染中有几个问题可以用量子计算机解决,但这些问题尚未在实践中得到证实。这项工作迈出了将量子计算应用于渲染中最基本的操作之一的第一步:射线投射。该技术计算由一组几何图元描述的 3D 世界模型中两点之间的可见性。对于给定的射线,该算法返回与其原点最接近的图元相交。如果没有空间加速结构,此操作的经典复杂度为 O(N)。在本文中,我们提出了一种用于射线投射的 Grover 算法(一种量子搜索算法)的实现。这提供了二次加速,允许在 O(√) 中对非结构化图元进行可见性评估