摘要。辐射传递方程是在大气温度温度上的温室气体效应的建模的核心和模拟的核心。为了处理云的逼真散射,我们需要处理极化并与向量辐射式跨方程式一起工作。在本文中,我们提出了一种基于积分数量和一种迭代方法的公式,该方法的收敛性和单音性被证明是雷利(Rayleigh)散射和极化的散射,即具有2个偏差方程的非线性系统,该方程与2个变量,an- gle and gle and glete and-Gle and flasile coulial coupl and频繁及其频繁的等方程式,并具有频繁的方程式。 ture。的存在和解决方案的唯一性被证明,并使用从卫星测量中获取的参数给出了现实的数值模拟。
湍流对远程成像系统的影响表现为图像模糊效应,通常由系统中存在的相畸变量化。可以想象,根据传播体积内的大气湍流强度,可以理解模糊效果。获得湍流强度曲线的一种方法是使用动态范围的雷利信标系统,该系统利用沿策略性的信标沿着传播路径的范围进行了差异,从而有效地推导了影响光学成像系统的模糊畸变的特定路径段贡献的估计。已经设计了一种利用此技术的系统,并且已经构建了用于测试的原型。该系统被称为TARDIS,该系统代表湍流和气溶胶研究动态询问系统。TARDIS是一种光学传感系统,基于在相对不变的湍流诱导的波前扰动的静态时期内动态更改收集传感器和瑞利信标之间的范围。一种概念收集的场景由信标组成,在该信标中,基于激光脉冲和摄像头快门速度,空气分子和气溶胶颗粒反向散射图像在不同距离捕获的距离。获得基于TARDIS的湍流强度曲线的基于测量的估计是基于整理分段的折射率结构参数,𝐶𝐶2,值为大气的特定层。这些𝐶𝐶𝐶𝐶𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠2值是从炸参数段(0𝑖𝑖)中发展出来的,这些值是从Shack-Hartmann波前传感器上的相邻测量值中推导的。从传感系统收集光圈上存在的相位方差的平均值估计炸参数的单个值。跨孔的估计相方差的平均值是由从Shack-Hartmann波前传感器测得的梯度重建的区域倾斜砖中构建的。本文提供了理解大气湍流的基础理论,提供了当前可用的湍流估计技术的参考,并提供了针对TARDIS的细节,层析成像湍流估计方法以及收集概念数据的初始证明的分析。这项研究提供了一种新颖的手段,用于量化大气湍流的强度特征。利用概述的方法,使用了扰动波前的直接测量,这与估计湍流强度曲线的其他方式有不同。由于这种差异,可以使用动态范围的信标来产生湍流概况估计值,以增加对其他方法的置信度,或用作不容易受到相同误差源影响的独立测量技术。此外,由于该技术利用了波前的直接测量,因此可以想象,这可以与用于图像校正的自适应光学系统相关。
摘要:本研究提出,激光脉冲可以产生有限振幅瑞利波,用于增材制造过程中的工艺监控。非接触式工艺监控使用脉冲激光产生瑞利波,并使用自适应激光干涉仪接收它们。文献中的实验和模型表明,有限振幅波形会随着传播距离而演变,甚至会在平面粒子速度波形中形成冲击波。非线性波形演变表明材料非线性,它对材料微观结构敏感,进而影响强度和断裂性能。测量是在定向能量沉积增材制造室内对平面 Ti-6Al-4V 和 IN-718 沉积物进行的。通过检测平面外粒子位移波形,还可以获得平面位移和速度波形。波形演变可以表征为 (i) 通过在不同点接收一个源振幅,或 (ii) 通过应用不同的源振幅在一个点接收。提供了针对有意调整的关键工艺参数的样本结果:激光功率、扫描速度和舱口间距。
1自动化与电视学院,俄罗斯科学院的西伯利亚分支,1 AC。Koptyug Ave.,630090 Novosibirsk,俄罗斯; ksyna_98@mail.ru(K.V.P. ); golikov.inc@mail.ru(e.v.g。 ); dostovalov@iae.nsk.su(A.V.D。 ); wolf@iae.nsk.su(a.a.w. ); z.munkueva@g.nsu.ru(Z.E.M. ); abdullinasr@iae.nsk.su(s.r.a. ); terentyev@iae.nsk.su(v.s.t. ); babin@iae.nsk.su(s.a.b。) 2诺华州立大学物理系,皮罗戈娃2,630090俄罗斯诺瓦西比尔斯克3俄罗斯科学院普罗克霍罗夫通用物理研究所,38 Vavilov St.,1199991莫斯科,俄罗斯,俄罗斯, egorova@nsc.gpi.ru 4 Dianov光纤研究中心,俄罗斯科学院普罗夫洛夫通用物理研究所,俄罗斯莫斯科119991瓦维洛夫街38号; sls@fo.gpi.ru *通信:skvorczov@iae.nsk.suKoptyug Ave.,630090 Novosibirsk,俄罗斯; ksyna_98@mail.ru(K.V.P.); golikov.inc@mail.ru(e.v.g。); dostovalov@iae.nsk.su(A.V.D。); wolf@iae.nsk.su(a.a.w.); z.munkueva@g.nsu.ru(Z.E.M.); abdullinasr@iae.nsk.su(s.r.a.); terentyev@iae.nsk.su(v.s.t.); babin@iae.nsk.su(s.a.b。)2诺华州立大学物理系,皮罗戈娃2,630090俄罗斯诺瓦西比尔斯克3俄罗斯科学院普罗克霍罗夫通用物理研究所,38 Vavilov St.,1199991莫斯科,俄罗斯,俄罗斯, egorova@nsc.gpi.ru 4 Dianov光纤研究中心,俄罗斯科学院普罗夫洛夫通用物理研究所,俄罗斯莫斯科119991瓦维洛夫街38号; sls@fo.gpi.ru *通信:skvorczov@iae.nsk.su
摘要。大气湍流通常会阻碍远距离光学成像应用。湍流对成像系统的影响可以表现为图像模糊效应,通常通过系统中存在的相位失真来量化。模糊效应可以根据沿传播路径测量的大气光学湍流强度及其对成像系统内相位扰动统计的影响来理解。获取这些测量值的一种方法是使用动态范围的瑞利信标系统,该系统利用沿传播路径的战略性变化的信标范围,有效地获得影响光学成像系统的像差的估计值。我们开发了一种从动态范围的瑞利信标系统中提取断层扫描湍流强度估计值的方法,该系统使用 Shack - Hartmann 传感器作为相位测量装置。介绍了从快速序列中获得的战略性范围变化的信标测量中提取断层扫描信息的基础,以及典型湍流场景的建模示例。此外,处理算法还用于模拟孤立强湍流层的识别。我们介绍了所选处理算法的基础,并讨论了该算法作为大气湍流分析方法的实用性。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.OE.59.8.081807]
当粒子与辐射波长相比非常小时,就会发生瑞利散射。这些粒子可能是小的尘埃或氮和氧分子。瑞利散射导致较短波长的能量散射得比较长波长的能量多得多。瑞利散射是高层大气中的主要散射机制。白天天空呈现“蓝色”就是由于这种现象。当阳光穿过大气层时,可见光谱中较短波长(即蓝色)的散射比其他(较长)可见波长的散射更多。日出和日落时,光线必须比中午时穿过大气层更远,较短波长的散射更完全;这使得较大比例的较长波长能够穿透大气层。
(b)使用 Mie ACCD 探测器(蓝色条)测量的示例性信号分布和通过 FI 传输的信号的 Lorentzian 拟合,用于确定 Mie 条纹质心位置 m。 (c)用瑞利 ACCD 探测器测得的示例性信号分布(绿色条)和通过两个 FPI 传输的信号的高斯拟合(A:粉色,B:橙色)用于确定瑞利点位置 r A 和 r B 。 div>
Continuous Systems, Vibrations of strings, bars, shafts and beams, discretised models of continuous systems and their solutions using Rayleigh – Ritz method, Mode summation method, Unit 4 Vibration Control, Methods of vibration control, principle of superposition, Numerical and computer methods in vibrations: Rayleigh, Rayleigh-Ritz and Dunkerley's methods, matrix iteration method for Eigen-value calculations, Stodola method, Holzer's method, Unit 5 Plane and Spherical acoustic waves, Transmission Phenomena, transmission from one fluid medium to another, normal incidence, reflection at the surface of a solid, standing wave patterns, transmission through three media, Resonators and filters, Absorption of sound waves in fluids : Phase log between pressure and condensation, viscous absorption of plane waves, heat conduction as a source of acoustic attenuation,第6单元的语音,听力和噪音,语音机制,语音的声音输出,耳朵解剖学,听力机制,耳朵的阈值,响度,音高和音色,节拍,听觉谐波和组合音调,用纯音,掩盖噪声掩盖。
Continuous Systems, Vibrations of strings, bars, shafts and beams, discretised models of continuous systems and their solutions using Rayleigh – Ritz method, Mode summation method, Unit 4 Vibration Control, Methods of vibration control, principle of superposition, Numerical and computer methods in vibrations: Rayleigh, Rayleigh-Ritz and Dunkerley's methods, matrix iteration method for Eigen-value calculations, Stodola method, Holzer's method, Unit 5 Plane and Spherical acoustic waves, Transmission Phenomena, transmission from one fluid medium to another, normal incidence, reflection at the surface of a solid, standing wave patterns, transmission through three media, Resonators and filters, Absorption of sound waves in fluids : Phase log between pressure and condensation, viscous absorption of plane waves, heat conduction as a source of acoustic attenuation,第6单元的语音,听力和噪音,语音机制,语音的声音输出,耳朵解剖学,听力机制,耳朵的阈值,响度,音高和音色,节拍,听觉谐波和组合音调,用纯音,掩盖噪声掩盖。
1900 年 12 月 14 日,马克斯·普朗克向德国物理学会提交了他对黑体辐射分布定律的推导,能量量子的概念首次出现在物理学中。考虑到量子理论产生的巨大影响,令人惊讶的是,很少有人关注普朗克迈出引入量子的第一步的推理的详细研究。当然,文献中有许多关于量子理论起源的描述,但几乎所有这些描述在历史上都是不准确的、缺乏批判性的,而且对于普朗克自己的工作及其背景都具有很大的误导性。我们确实有普朗克的回顾性记述[1],这些记述清晰而一致地描绘了他自己对这一发展的看法,还有罗森菲尔德[21]的一篇关于量子理论早期的优秀专著,该书对普朗克的工作进行了恰当的历史背景介绍,但鲜为人知。在我看来,如果我们要充分理解普朗克决定性一步的性质,以及它在多大程度上标志着与先前思想的真正决裂,仍然有两个关键问题必须回答,这两个问题并非毫无关联。第一个问题实际上是一个历史问题:普朗克是否知道瑞利推导出的辐射分布定律是经典物理学的必然结果?大多数作者对这个问题的回答是肯定的,并将普朗克引入量子描述为他对经典理论与实验结果不一致以及经典理论在“紫外灾变”中表现出的内部失败所带来的“危机”挑战的回应。事实上,根本没有这样的危机,或者说根本没有意识到这样的危机。1900 年夏天之前,所有关于黑体辐射的研究都是在不了解古典物理学对这个问题意味着什么的情况下进行的。直到 1900 年 6 月,瑞利勋爵才发表了一份两页的说明,其中首次推导出古典分布定律,瑞利论文的非常严重的意义在相当长一段时间内才被普遍认识到。普朗克在 1900 年和 1901 年的论文中没有提到瑞利的说明,在多年后发表的关于量子理论起源的论述中也没有提到瑞利。然而,普朗克似乎知道瑞利的工作,但他并不认为它比他对大约在同一时间发表的其他几篇论文更有意义,在这些论文中,或多或少地尝试了临时方法。