日本脑炎(JE)是一种黄脑病毒,威胁着世界各地的大量人群,由arboverus日本脑炎病毒(JEV)引起。除了严重的症状外,该疾病的死亡率约为30%。尽管可以作为一种预防措施接受疫苗接种,但一旦患病就没有药物来治疗该疾病。本研究报告了四个分子,可以用作靶向JEV的非结构蛋白5(NS5)的RNA依赖性RNA聚合酶(RDRP)结构域的分子对接和分子动力学模拟筛选的铅化合物。四种铅化合物是Zinc9972155,Zinc67912950,Zinc95910070和Zinc196939367,来自锌数据库。铅化合物对JEV NS5的RDRP结构域的亲和力明显高于天然核苷酸,表明它们具有有效的竞争抑制剂的潜力。
摘要背景:2019年冠状病毒疾病(Covid-19)大流行,是由严重的急性呼吸综合症冠状病毒-2(SARS-COV-2)引起的,比SARS,MERS,H1N1和EBOLA的流行病的综合寿命要多。当前,预防和控制差是Covid-19管理中的目标,因为没有特定药物可以治愈或可预防的疫苗。因此,许多研究组探讨了药物的重新利用,并且已经检查了许多靶蛋白。主要蛋白酶(M pro)和RNA依赖性RNA聚合酶(RDRP)是SARS-COV-2中的两个靶蛋白,这些靶蛋白已经过验证并进行了广泛研究,以进行Covid-19的药物开发。RDRP在两个先前已知的冠状病毒SARS-COV和MERS-COV之间具有高度同源性。方法:在这项研究中,使用Schrodinger的计算机辅助药物发现工具,将FDA批准的药物库停靠在RDRP的活跃部位上。结果:我们已经从标准的精度对接和互动研究中与酶上的活性位点结合的相互作用研究入围了14种药物。这些药物是抗生素,NSAIDS,降低脂肪,凝血,溶栓和抗过敏药。在分子动力学模拟中,pitavastatin,ridogrel和rosoxacin在通过ARG555和Divalent镁与活性位点表现出了优越的结合。结论:可以在临床前和临床研究中进一步优化pitavastatin,Ridogrel和Rosoxacin,以确定它们在Covid-19治疗中的可能作用。
摘要 针对 COVID-19 和其他冠状病毒引起疾病的药物研究集中在最保守和最重要的蛋白质上,主要是主要蛋白酶 (M pro ) 和木瓜蛋白酶样 (PL pro ) 以及 RNA 依赖性 RNA 聚合酶 (RdRp)。M pro 的抑制剂 Nirmatrelvir 最近作为双药组合 Paxlovid 的一部分获得 FDA 批准,还有许多其他药物处于不同的开发阶段。多种 PL pro 抑制剂候选药物正在研究中,但尚未进入临床试验阶段。几种重新利用的 RdRp 抑制剂已投入使用。我们可以预期,一旦抗 COVID-19 药物得到广泛使用,就会出现 SARS-CoV-2 的耐药变体,我们已经看到针对 SARS-CoV-2 RdRp 的药物出现了这种情况。我们假设可以通过识别现有病毒种群中已经存在的可能的逃逸突变来预测此类变体的出现。我们小组之前开发了 coronavirus3D 服务器 (https://coronavirus3d.org),用于跟踪 SARS-CoV-2 在其蛋白质三维结构背景下的演变。在这里,我们引入了专门的页面来跟踪 M pro 和 PL pro 的潜在耐药突变的出现,表明此类突变已经在 SARS-CoV-2 病毒群中传播。通过定期更新,耐药性跟踪器提供了一种简单的方法来监测和潜在预测 SARS-CoV-2 病毒中耐药性突变的出现。
正在流行的严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2),又称为 2019 冠状病毒病 (COVID-19),已导致全球超过 1300 万人感染,超过 56 万例死亡 ( https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports ),对全球公共卫生和经济构成重大威胁。目前,尚无有效的抗病毒药物和疫苗被批准用于预防或治疗 COVID-19。人们为开发针对 SARS-CoV-2 的药物和疫苗做出了巨大努力。主蛋白酶(Mpro,也称为3CLpro)是冠状病毒中一个很有吸引力的药物靶点,目前已报道了几种强效的 SARS-CoV-2 3CLpro 抑制剂及其与蛋白酶复合的晶体结构(Dai et al., 2020 ; Jin et al., 2020 ; Zhang et al., 2020 )。虽然病毒 RNA 依赖性 RNA 聚合酶(RdRp)是众所周知的广谱抗病毒药物靶点,但 SARS-CoV-2 RdRp 及其与吉利德科学公司开发的一种有前途的抗病毒候选药物瑞德西韦的复合物的低温电子显微镜结构验证了瑞德西韦对病毒 RNA 复制的有效抑制,并为抗击 SARS-CoV-2 感染的药物设计提供了合理的模板(Gao et al., 2020; Wang et al., 2020; Yin et al., 2020)。此外,SARS-CoV-2 表面的三聚体刺突蛋白通过与宿主细胞受体血管紧张素转换酶 2(ACE2)的肽酶结构域结合,在病毒进入过程中起关键作用(Yan et al., 2020)。研究表明,不仅 ACE2 识别的受体结合域,而且 SARS-CoV-2 刺突蛋白的 N 端域也是治疗性单克隆抗体的靶位 (Chi et al., 2020 )。因此,3CLpro 或 RdRp 的抑制剂和针对刺突蛋白的抗体均为开发用于治疗 COVID-19 的直接抗病毒 (DAA) 药物提供了潜在候选药物。
背景:乙型肝炎病毒非结构性蛋白5B(NS5B),该蛋白质依赖RNA依赖性RNA聚合酶(RDRP)正在研究。已证明RDRP高度流动性,并且对于病毒复制至关重要。限制病毒RNA聚合酶活性的 NS5B蛋白抑制作用是Sofosbuvir(SFV)停止病毒复制的方式。 所有针对乙型肝炎病毒基因型1 E 6和一些二线治疗的一线治疗都需要使用Sofosbuvir与其他药物结合使用。 对于固定速度超过90%的基因型,通常约为100%,SFV和VLE的组合是成功和建议的。 感染人类免疫缺陷病毒(HIV)的患者使用它来增加耐力并防止强迫污染。 方法论:这项研究提供了对文献中报道的药理学估计中报道的分析研究的同时和比较评估。 目前可获得150多种来自著名机构的论文,目前可提供技术,技术和医学研究。 在当前的综述中成功介绍了对常规,现象和独特的SFV方法的透彻描述。 结论:新的NS5B抑制剂SFV被认为具有治疗性有望以及最先进的分析研究。NS5B蛋白抑制作用是Sofosbuvir(SFV)停止病毒复制的方式。所有针对乙型肝炎病毒基因型1 E 6和一些二线治疗的一线治疗都需要使用Sofosbuvir与其他药物结合使用。对于固定速度超过90%的基因型,通常约为100%,SFV和VLE的组合是成功和建议的。感染人类免疫缺陷病毒(HIV)的患者使用它来增加耐力并防止强迫污染。方法论:这项研究提供了对文献中报道的药理学估计中报道的分析研究的同时和比较评估。目前可获得150多种来自著名机构的论文,目前可提供技术,技术和医学研究。在当前的综述中成功介绍了对常规,现象和独特的SFV方法的透彻描述。结论:新的NS5B抑制剂SFV被认为具有治疗性有望以及最先进的分析研究。
RdRp 0.587302 0.087633 0.890853 0.065624 0.284112 NSP2 0.587302 0.046212 0.968646 0.036751 0.333196 N 蛋白 0.578125 0.083752 0.790443 0.02517 0.305663 NSP10 0.45122 0.017466 0.523294 0.039623 0.12841 ExoN 0.486842 0.014993 0.606035 0.036957 0.228533 NSP12 0.578125 0.059686 0.946454 0.036738 0.243958 NSP13 0.397849 0 0.272434 0.01722 0.128044 NSP9 0.513889 0.010905 0.629844 0.025474 0.183429 赫尔 0.45122 0.002244 0.355033 0.021652 0.040965
核苷酸和基于核苷的模拟药物被广泛用于治疗急性病毒感染和慢性病毒感染。这些药物由于一种或多种不同的机制抑制病毒复制。通过在每个复制周期中降低病毒能力来修饰病毒的遗传结构。他们的临床成功对多种病毒表现出强大的有效性,包括埃博氏病毒,丙型肝炎病毒,HIV,MERS,SARS-COV和最近的新兴SARS-COV2。在这篇综述中,已经选择了七种不同类型的抑制剂,它们显示了针对RNA病毒的广谱活性。给出了两个类似物的详细的外观和作用机理,并讨论了临床观点。这些抑制剂结合了新型的SARS-COV-2 RDRP,进一步终止了具有可变效果的聚合酶活性。最近的研究为使用核苷酸和核苷类似物抑制剂提供了病毒RDRP抑制活性的分子基础。此外,要确定那些需要更多研究和发育来打击新型感染的药物。因此,迫切需要通过建立细胞培养来关注当前药物。如果证明了它们的能力,那么将来将探索它们作为新爆发的潜在治疗剂。2022作者。由Elsevier B.V.代表国王沙特大学出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
血管紧张素转化酶2(ACE2)是SAR-COV-2的宿主细胞结合位点,构成了两倍的药物发育问题。首先,ACE2本身的作用仍然是一个调查问题,并且没有特定的药物可用。第二,由于SARS-COV-2与ACE2的相互作用,肾素 - 血管紧张素系统(RAS)涉及到重要器官(如心脏,肾脏,脑和肺部)的功能。在开发抗病毒药物的coVID-19,ACE2,依赖RNA的RNA聚合酶(RDRP)和参与病毒和细胞基因表达的特定含量已成为主要靶标。sars-cov-2是一种新的病毒,具有异常高死亡率,需要在紧急情况下获得药物,并且药物重新施加是一种主要策略。考虑到全世界的巨大死亡率和发病率,我们已经尝试发现与RAS相互作用的药物,并使用分子对接从草药植物中识别铅化合物。宿主ACE2和病毒RNA依赖性RNA聚合酶(RDRP)和ORF8均为治疗Covid-19的主要靶标。虽然当前批准的药物的药物重新利用似乎是治疗Covid-19的一种策略,但目的是植物化学物质可能是发现铅化合物的另一种重要策略。在使用硅分子对接中,我们已经确定了一些植物化学物质,这些植物可以为设计草药和合成疗法提供见解以治疗Covid-19。
体外数据显示,ASC10 对 SARS-CoV-2 具有显著活性。ASC10 是公司内部发现的候选药物,拥有全球知识产权和商业权利。与美国食品药品监督管理局 (FDA) 批准的 RdRp 靶向 Molnupiravir 相比,ASC10 具有新的差异化化学结构。歌礼已为多种化合物和用途提交了专利申请。动物研究表明,与 Molnupiravir 相比,ASC10 具有更高的生物利用度。歌礼计划于 2022 年上半年在中国、美国等地提交临床试验的试验药物申请 (IND)。