摘要 创新工具对于推进疟疾控制至关重要,并且取决于对疟蚊传播疟原虫的分子机制的理解。基于 CRISPR/Cas9 的基因破坏是一种揭示媒介-病原体相互作用的潜在生物学原理的有效方法,其本身可以成为蚊虫控制策略的基础。然而,用于对蚊子(尤其是疟蚊)进行基因改造的胚胎注射方法既困难又低效,特别是对于非专业实验室而言。在这里,我们采用了 ReMOT 控制(受体介导的卵巢货物转导)技术,将 Cas9 核糖核蛋白复合物递送至成年蚊子卵巢,从而无需注射胚胎就在疟疾媒介斯氏疟蚊中产生有针对性的可遗传突变。在疟蚊中,ReMOT 控制基因编辑与标准胚胎注射一样有效。 ReMOT 控制对按蚊的应用,为缺乏设备或专业知识进行胚胎注射的疟疾实验室揭示了 CRISPR/Cas9 方法的威力,并建立了 ReMOT 控制对不同蚊子物种的灵活性。
。CC-BY 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2023 年 8 月 15 日发布。;https://doi.org/10.1101/2023.08.14.553172 doi:bioRxiv 预印本
摘要 尽管蜱虫能够获得和传播多种致病病原体,但对蜱虫的研究却落后于蚊子等其他节肢动物媒介,这主要是因为在应用现有的遗传和分子工具方面存在挑战。CRISPR-Cas9 正在改变非模式生物研究;然而,尚未有蜱虫成功进行基因编辑的报道。注射蜱虫胚胎进行基因编辑的技术挑战进一步减缓了研究进展。目前,尚无针对任何螯合动物物种(包括蜱虫)的胚胎注射方案。在此,我们报告了一种针对黑腿蜱(Ixodes scapularis)的成功胚胎注射方案,以及使用此方案通过 CRISPR-Cas9 进行基因组编辑。我们还证明 ReMOT 控制技术可成功用于在昆虫纲之外产生基因组突变。我们的研究结果为蜱研究界提供了创新工具,对于促进我们对蜱虫传播病原体的分子机制以及宿主-媒介-病原体相互作用的潜在生物学的理解至关重要。
淡色库蚊复合体分布广泛,导致蚊媒疾病在人类中的传播难以预防。使用 CRISPR/Cas9 基因编辑是一种有效的技术,有可能解决日益严重的蚊媒疾病问题。本研究利用 ReMOT 控制技术在淡色库蚊中生产转基因蚊子。通过注射 60 只成年雌蚊建立了显微注射系统——需 14 µ l 注射混合物,使用≤1 µ l 的内体释放试剂(氯喹或皂苷)不会发生沉淀。在采血后 24 小时(卵黄发生高峰期)注射 P2C 增强型绿色荧光蛋白-Cas9(P2C-EGFP-Cas9)核糖核蛋白复合物进入卵巢的效率为 100%。利用此方法进行KMO敲除,我们发现当通过ReMOT Control将P2C-Cas9 RNP复合物注射到淡色库蚊成年血淋巴中时,卵巢中也能发生基因编辑。在氯喹组,筛选出的2,251只G 0 子代中,9只个体表现出白眼和马赛克眼表型。在皂苷组,筛选出的2,462只G 0 子代中,观察到8只突变个体。测序结果显示13 bp的缺失,进一步证实了发生基因编辑的事实。总之,ReMOT Control在淡色库蚊中的成功应用,不仅为该方法提供了基本参数(注射参数和注射时间),而且有利于蚊虫生物学和防治的研究。
利用 ReMOT 控制实现中华按蚊的高效基因编辑 杨晓林 1+、凌霞 1+、孙泉 2+、邱品品 1、项凯 1、洪俊峰 1、何树林 1、陈杰 3、丁鑫 3、胡海 3、何正波 1、周曹 1*、陈斌 1*、乔梁 1* 1 重庆师范大学生命科学学院昆虫与分子生物学研究所,重庆市媒介昆虫重点实验室,重庆 401331。 2 重庆市巡检生命科技有限公司,重庆 400700。 3 西南大学资源昆虫国家重点实验室,重庆 400715 论文标题:中华按蚊的 ReMOT 控制 + 同等贡献。 * 通讯作者。电子邮箱:qiaoliangswu@163.com; zhouc@cqnu.edu.cn; bin.chen@cqnu.edu.cn 摘要:CRISPR/Cas9 基因编辑为揭示蚊子发育和蚊媒疾病传播的分子机制以及探索遗传控制策略提供了一种有效的方法。然而,将 Cas9
烟粉虱隐种中东-小亚细亚 I (MEAM1) 是一种严重的农业广食性害虫,也是多种植物病毒的载体,在全球范围内造成了巨大的经济损失。由于缺乏强大的基因编辑工具,烟粉虱的控制受到限制。烟粉虱的基因编辑很困难,因为其胚胎很小,在技术上很难注射,而且注射后死亡率很高。我们开发了一种 CRISPR/Cas9 基因编辑方案,该方案基于注射卵黄发生成年雌性而不是胚胎(“ReMOT 控制”)。我们鉴定了一种卵巢靶向肽配体(“BtKV”),当它与 Cas9 融合并注射到成年雌性体内时,会将核糖核蛋白复合物转导至生殖系,从而实现对后代基因组的有效、可遗传的编辑。与胚胎注射相比,成虫注射很容易,并且不需要专门的设备。开发易于使用的烟粉虱基因编辑协议将使研究人员能够将反向遗传方法应用于该物种,并将带来针对这种毁灭性害虫的新控制方法。
摘要 烟粉虱隐种中东-小亚细亚 I (MEAM1) 是一种严重的农业广食性害虫,也是多种植物病毒的载体,在全球范围内造成了重大经济损失。由于缺乏强大的基因编辑工具,烟粉虱的控制受到限制。烟粉虱的胚胎很小,注射起来在技术上具有挑战性,而且注射后死亡率很高,因此很难对其进行基因编辑。我们开发了一种 CRISPR-Cas9 基因编辑方案,该方案基于注射卵黄发生成年雌性而不是胚胎(“ReMOT 控制”)。我们确定了一种卵巢靶向肽配体(“BtKV”),当它与 Cas9 融合并注射到成年雌性体内时,会将核糖核蛋白复合物传导至生殖系,从而实现对后代基因组的有效、可遗传的编辑。与胚胎注射相比,成虫注射很容易,不需要专门的设备。开发易于使用的烟粉虱基因编辑协议将使研究人员能够将反向遗传方法应用于该物种,并将带来针对这种毁灭性害虫的新控制方法。
有关药物浓度解释的问题,可以在TEL上找到临床药理顾问。046-17 46 20(10.00-16.00)。舍曲林和脱甲基脱甲基抗抑郁药。确定浓度的指示包括但不限制自身的依从性控制,尽管有足够的剂量,但尽管剂量低或不令人满意的效果,但副作用。舍曲林的半寿命通常在24-32小时之间[1]。主要的代谢产物脱甲米酯对羟色胺传送带的亲和力较低,并且不认为对药理活性有显着贡献[2,3],但其与母质相关的浓度可以表明代谢中的偏差。desmetylsetrilin的半寿命在56至120小时之间[1]。塞特拉林的新陈代谢涉及几种不同的CYP酶(CYP2D6,CYP2B6,CYP3A4,CYP2C9和CYP2C19),使相互作用的风险较低[4]。但是,CYP2C19代谢缓慢的人可能会表现出来(P.G.A.遗传学或与例如埃塞美拉唑)更高浓度静态[5,6]。性别似乎对舍曲林的浓度没有重要作用[7,8],但另一方面,高年龄与较高的浓度有关[8,9]。
钻孔储热系统利用附近的多个钻孔将能量直接储存在地下,热载体(通常是水)在钻孔中循环。到目前为止,以输送热量为目的的钻孔储热主要用于储存太阳能热能。然后,钻孔储热被纳入太阳能供暖系统,用于为单个住宅区供暖,以减少太阳辐射和供暖需求之间的季节性不匹配,并增加供暖系统中太阳能的比例。对于这种钻孔热存储应用,存储的能量可以通过太阳能集热器表面的大小来控制。然而,对于工业钻孔储热应用,可储存的能量取决于设施中可用的多余热量。此外,一个行业通常有几种耗能过程,由于操作随时间变化以及产生热量的不同质量,需要对哪些过程应集成到热回收系统中以及如何设计钻孔储热本身进行选择。此外,计算工业设施中可供储存的热量时,需要对储存过程中要包括的各个热流进行测量数据,这意味着,对于工业钻孔储热应用,这必须比用于太阳能储存的钻孔储热更加具体地进行,对于太阳能储存的钻孔储热,大多数位置都可以直接获得用于此计算的历史太阳辐射数据。
语言语言:用于评估的英语表格该课程是通过家庭任务单独或组中的家庭任务以及在考试厅单独进行的。如果在相同的考试元素中被拒绝两次的学生希望改变审查员以获取下一个考试机会,则必须以书面形式提交该请求,并批准,如果没有特殊原因,则必须获得批准(HF第6章,第22章)。如果课程停止或经历了重大变化,则必须保证至少三年的考试(包括定期考试)至少一年,但是在课程停止/更改后的两年后。关于实习和VFU,相应的适用,但仅限于额外检查。该课程的等级是经过良好批准的一项(5),经过批准的(4),批准(3)和失败(U)。为了在课程中获得批准,必须批准作业和考试。整个课程的评级由书面考试确定。课程评估该课程是通过教师和学生代表之间的课程和课程的会议来评估课程的。此外,还将匿名问卷用于书面信息。评估结果用于通过显示可以添加,改进,更改或删除的部分来改善课程。其他课程是用Chalmers收集的。课程文献将在课程开始前的8周之前出版。该课程替换了课程DIT250,7.5个学分。本课程不能包括在包含DIT250的程度中。它也不可能是基于包括250的另一个程度的学位的一部分。