一种动力下肢外骨骼包括 ReWalk™ Personal 6.0(ReWalk Robotics)和 Indego®(Parker Hannifin),可根据姿势信息提供用户启动的移动性。站立、行走、坐下和上下楼梯模式由腕带上的模式选择器决定。ReWalk™ 包括一系列传感器和专有算法,可分析身体运动(例如躯干倾斜)并操纵电动腿部支架。倾斜传感器用于向机载计算机发出信号,告知何时采取下一步行动。使用动力外骨骼的患者必须能够使用前臂拐杖或助行器用手和肩膀保持平衡。使用 ReWalk™ [1] 行走的说明是将拐杖放在身体前方,然后稍微弯曲肘部,将重量移向前腿,向前腿侧倾斜。后腿将稍微抬离地面,然后开始向前移动。使用拐杖伸直后腿可以继续向前移动。另一条腿重复此过程。
6计算机学生摘要,我们已经看到了康复外骨骼的出现,在康复疗法方面发生了革命。这些可穿戴的机器人正在改变瘫痪的患者和中风幸存者的游戏,为康复提供了新的希望。我们的团队一直在探索外骨骼设计的迷人世界,我们很高兴分享我们的见解。从机械设计到人类机器人相互作用,这些设备正在推动康复评估和治疗中可能的边界。在这篇评论中,我们将带您穿越康复外骨骼技术的发展。我们将研究这些人工外骨骼背后的生物力学,以了解联合机制和自由度。我们还将探索尖端的传感器技术,例如力传感器和惯性测量单元,从而使精确的运动控制成为可能。另外,我们将检查个性化治疗的自适应控制算法,并分享来自临床试验的现实世界经验。最后,您将清楚地了解该领域的前进方向及其改变生活的潜力。关键字:康复外骨骼,辅助机器人技术,可穿戴外骨骼,神经居住技术,人类机器人互动(HRI)康复外骨骼技术的进化康复外骨骼的旅程是不可思议的。从他们谦虚的开端到尖端设备,我们今天看到,这些可穿戴的机器人彻底改变了康复疗法领域。这些早期设计的示例包括DGO,Lopes和Alex 1。早期设计用于康复目的的外骨骼的概念在1960年代开始成形。最初,这些设备笨重,固定,主要用于训练具有体重支撑的跑步机的患者。这些系统旨在减少康复期间下肢的负载,但其有限的移动性限制了它们用于临床环境。随着技术的高级,研究人员开始专注于开发便携式辅助外骨骼。到2000年代初,我们看到了Ekso,Rewalk,Indego和Exo H2 1等设备的出现。这些外骨骼旨在为脊髓损伤导致完全麻痹的个体提供最大的援助。但是,它们仍然相对较重,重11至25千克1。
6 计算机专业学生摘要随着康复外骨骼的出现,我们看到了康复治疗的革命。这些可穿戴机器人正在改变瘫痪患者和中风幸存者的命运,为康复带来新的希望。我们的团队一直在探索迷人的外骨骼设计世界,我们很高兴分享我们的见解。从机械设计到人机交互,这些设备正在突破康复评估和治疗的极限。在这篇评论中,我们将带您了解康复外骨骼技术的演变。我们将深入研究这些人工外骨骼背后的生物力学,研究关节机制和自由度。我们还将探索使精确运动控制成为可能的尖端传感器技术,如力传感器和惯性测量单元。此外,我们将研究个性化治疗的自适应控制算法,并分享临床试验的真实经验。到最后,您将清楚地了解这个领域的发展方向及其改变生活的潜力。关键词:康复外骨骼、辅助机器人、可穿戴外骨骼、神经康复技术、人机交互 (HRI) 康复外骨骼技术的演变 康复外骨骼的发展历程可谓非同寻常。从不起眼的开始到我们今天看到的尖端设备,这些可穿戴机器人彻底改变了康复治疗领域。 早期设计 用于康复目的的外骨骼概念开始形成于 20 世纪 60 年代。最初,这些设备体积庞大、固定式,主要用于在跑步机上训练患者并支撑体重。这些早期设计的例子包括 DGO、LOPES 和 ALEX 1。这些系统旨在减轻康复期间下肢的负荷,但它们的有限移动性限制了它们在临床环境中的使用。随着技术的进步,研究人员开始专注于开发便携式辅助外骨骼。到 21 世纪初,我们看到了 Ekso、ReWalk、Indego 和 Exo H2 1 等设备的出现。这些外骨骼旨在为因脊髓损伤而完全瘫痪的人提供最大程度的帮助。然而,它们仍然相对较重,重达 11 至 25 公斤 1 。