核电站的布局是基于单个机组(图 1.1)而制定的。布局考虑了安全要求、能量流动距离、可建造性、可维护性、安全性和经济性。反应堆安全壳建筑 (RCB) 呈矩形。出于安全考虑,RCB、燃料建筑 (FB) 和两个蒸汽发生器建筑 (SGB) 连接并铺设在一个公共基座筏上。此外,控制建筑、两个电气建筑和放射性废物建筑也铺设在公共基座筏上,并连接起来形成一个由八座建筑组成的核岛,以减少地震荷载下的结构响应幅度和电缆长度。所有安全相关建筑的完工楼层均高于设计基准洪水水位 0.8 米。提供一座服务建筑以满足工厂服务的需求。涡轮机建筑的位置使得导弹轨迹位于安全相关建筑和烟囱之外。四台柴油发电机满足 III 类应急电源要求,安装在两个独立的安全相关柴油发电机建筑中。烟囱高 100 米,靠近放射性废物建筑。辐射区只有一个入口。开关站的定位符合电力疏散方案,基于 220 kV 输电系统。
核电站的布局是基于单个单元(图 1.1)而制定的。布局考虑了安全要求、能量流动距离、可建造性、可维护性、安全性和经济性。反应堆安全壳建筑 (RCB) 呈矩形。出于安全考虑,RCB、燃料建筑 (FB) 和两个蒸汽发生器建筑 (SGB) 连接并铺设在一个公共基座筏上。此外,控制建筑、两个电气建筑和放射性废物建筑也铺设在公共基座筏上,并连接起来形成一个由八座建筑组成的核岛,以减少地震荷载下的结构响应幅度和电缆长度。所有安全相关建筑的完工楼层均高于设计基准洪水水位 0.8 米。提供一座服务建筑以满足工厂服务的需求。涡轮机建筑的位置使得导弹轨迹位于安全相关建筑和烟囱之外。四台柴油发电机为满足 III 类应急电源要求而提供,安装在两个独立的安全相关柴油发电机建筑中。烟囱高 100 米,靠近放射性废物建筑。辐射区只有一个入口。开关站的定位符合电力疏散方案,基于 220 kV 输电系统。
在核潜艇反应堆燃料中使用高浓缩铀 (HEU) 与使用低浓缩铀 (LEU) 之间存在某些设计权衡,这些权衡包括堆芯寿命和大小、总功率和反应堆安全性等因素。为了评估这些权衡,对三种分别使用浓缩度为 7%、20% 和 97.3% 的铀燃料的 50MWt 反应堆设计进行了比较。7% 和 20% 的设计假定使用二氧化铀 (U02) 燃料,燃料为“焦糖配置”,而 97.3% 的设计假定为分散型。(这些设计使用阿贡国家实验室 IBM 3033 上的 EPRI-Cell 计算机代码建模。通过 TYMNET 公共网络系统从麻省理工学院的 DEC VT-100 终端访问该设施)。结论是,20% 浓缩堆芯的设计寿命(1200 天满功率运行)可与 97.3% 浓缩堆芯相同。7% 浓缩堆芯无法维持这段时间的临界状态。但是,堆芯寿命可以达到 600 天满功率运行。7% 和 20% 浓缩堆芯都比 97.3% 浓缩堆芯大。但是,使用整体设计而不是环型设计可以弥补较大的堆芯尺寸。
本报告是由美国政府某个机构资助的工作报告。美国政府、其任何机构及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,亦不保证其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定的商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或偏爱。本文表达的作者的观点和意见不一定表明或反映美国政府或其任何机构的观点和意见。
- 170万美元的技术商业化基金(TCF)与LANL合作开发一个热管填充系统 - 从DOE ARPA-E MEITNER(DOE ARPA-E MEITNER(建模增强创新创新)开拓性的核能重新维持)计划,以模拟固体核心特征 - $ 450万doe Arpa-e after Indrestion-doe Arpa-e after Indrestions - $ 45M DOE FOA-1817设计和测试活动奖与核演示准备有关 - 1200万美元的DOD SCO阶段IA•积极参与行业组织
核电站的布局是基于单个机组(图 1.1)而制定的。布局考虑了安全要求、能量流动距离、可建造性、可维护性、安全性和经济性。反应堆安全壳建筑 (RCB) 呈矩形。出于安全考虑,RCB、燃料建筑 (FB) 和两个蒸汽发生器建筑 (SGB) 连接并铺设在一个公共基座筏上。此外,控制建筑、两个电气建筑和放射性废物建筑也铺设在公共基座筏上,并连接起来形成一个由八座建筑组成的核岛,以减少地震荷载下的结构响应幅度和电缆长度。所有安全相关建筑的完工楼层均高于设计基准洪水水位 0.8 米。提供一座服务建筑以满足工厂服务的需求。涡轮机建筑的位置使得导弹轨迹位于安全相关建筑和烟囱之外。四台柴油发电机满足 III 类应急电源要求,安装在两个独立的安全相关柴油发电机建筑中。烟囱高 100 米,靠近放射性废物建筑。辐射区只有一个入口。开关站的定位符合电力疏散方案,基于 220 kV 输电系统。
培养一支技术熟练的劳动力队伍来支持核能至关重要,因为 SMR 技术需要广泛的核工程、安全协议、反应堆操作等方面的专业知识。此外,在各种化石燃料领域接受过培训的工人将需要重新学习和再培训,以适应新的就业环境。需要对现有的教育计划进行评估,以确定相关的劳动力发展机会。通过在常春藤技术社区学院、普渡理工学院和普渡核工程以及其他相关学科之间建立协同作用,可以为印第安纳州各级劳动力提供全面的核培训。
EPR 提供特别有效的物理保护,防止极端外部危害。反应堆厂房 (1)、乏燃料厂房 (2) 和四座安全厂房 (3) 中的两座以及控制室 (4) 均受到钢筋混凝土外壳 (5) 的保护,其厚度足以承受军用或商用飞机的高速撞击。另外两座安全厂房位于反应堆厂房的相对两侧,因此只有其中一座因飞机坠毁而受损,不会造成任何安全后果。同样,用于应急电力供应的柴油发电机位于两座不同的厂房 (6) 中,也受到地理隔离的保护。
先进反应堆概述先进反应堆设计通常在燃料形式、冷却剂或部署模型方面具有与现有轻水反应堆不同的属性。这包括水冷小型模块化反应堆 (SMR)、非水冷反应堆(如高温气冷反应堆或熔盐反应堆)和各种微反应堆概念。这些技术在安全性、经济性、性能和长期能源安全方面可能比当前的发电技术有实质性的改进。随着全球深度脱碳努力的持续发展,人们对先进反应堆作为一种无碳、可靠、经济且固有安全的发电和供热来源的兴趣日益浓厚。这些特性源于温度和环境的差异,这需要替代材料适应更高甚至更严酷的操作条件。