其中一些自建造以来就经过了修改、升级和翻新,以满足更高中子通量的要求。然而,其中一些老化的研究反应堆仍在使用其原有的仪表和控制系统 (I&C) 运行,这些系统对于反应堆安全非常重要,可以防止异常事件发生以及涉及启动、关闭和功率调节的反应堆控制。磨损和过时的 I&C 系统会导致运行问题以及难以获得替换零件。此外,要满足核监管机构规定的严格安全条件,需要对研究反应堆 I&C 系统进行现代化改造,并将额外的仪表单元集成到反应堆中。过去几年,I&C 系统的技术进步迅速,研究反应堆界应该采用这项技术。随着微处理器和个人计算机的使用增加,对高水平复杂度和可靠性的要求也随之提高,以满足各种操作和安全要求。这要求研究反应堆运营商在规划如何改进老化研究反应堆的仪表和控制时,以及在建造新设施时做出适当选择时,必须仔细考虑。为了澄清这些问题,并为反应堆运营商提供一些关于研究反应堆仪表和控制系统的最新技术和未来趋势的指导,1995 年 12 月 4 日至 8 日在斯洛文尼亚卢布尔雅那举行了研究反应堆仪表和控制技术和趋势技术委员会会议。
与所有其他反应堆设计相比,Natrium Plant设计简单且精简,使其更容易,更快,更便宜。我们的创新设计大大减少了核级安全设备和材料的数量,从而降低了工厂成本。具有依赖自然力量和高级设计的增强的安全功能,Natrium Plant的低压系统以及将钠作为冷却液的使用允许较小的紧急计划区(EPZ),从而增加了可能的地点数量。
2024年的《预先法案》获得了两党的支持,并由拜登总统于2024年7月签署。它要求NRC采取许多行动,尤其是在新反应堆和燃料的许可领域,同时保持NRC保护公共卫生和安全的核心使命。该行为影响了广泛的NRC活动,包括支持NRC劳动力的招聘和保留,增加了NRC的预算过程中的灵活性,增强了高级反应堆和融合技术的监管框架,并要求提供NRC的有效,及时,及时,可预测的许可应用程序的计划。
SMR中的创新正在进行几个国家。 这包括在开发的各个阶段的SMR,从新概念的基本研究到成熟设计的商业部署和运营。 这一创新管道包括一系列反应堆概念 - 从现有的轻水反应堆技术中的增量创新到高级IV反应堆概念的突破。 此管道还包括各种配置的SMR-一些陆基,一些多模块,一些基于海洋的,有些可运输。 这些创新结合了新材料,一系列冷却剂和创新燃料。 创新管道有望生产一系列具有不同尺寸的商业SMR,具有一系列出口温度,以及在安全,灵活性和经济性领域的新属性和潜在益处,以及花费的燃料和废物管理。SMR中的创新正在进行几个国家。这包括在开发的各个阶段的SMR,从新概念的基本研究到成熟设计的商业部署和运营。这一创新管道包括一系列反应堆概念 - 从现有的轻水反应堆技术中的增量创新到高级IV反应堆概念的突破。此管道还包括各种配置的SMR-一些陆基,一些多模块,一些基于海洋的,有些可运输。这些创新结合了新材料,一系列冷却剂和创新燃料。创新管道有望生产一系列具有不同尺寸的商业SMR,具有一系列出口温度,以及在安全,灵活性和经济性领域的新属性和潜在益处,以及花费的燃料和废物管理。
随着人工智能技术的发展,人工智能已经变得复杂,能够解决制造、金融和教育等各个领域的复杂问题。同样,人工智能的快速发展为先进核反应堆的设计提供了新的考虑。与传统的轻水反应堆不同,先进反应堆有许多创新的结构和事故条件需要考虑。这些反应堆的设计和优化需要尖端的技术方法。人工智能在这一领域的整合证明了其变革潜力。它为反应堆设计的优化、自主控制和先进核电软件的开发提供了工具。为了研究人工智能在先进核反应堆设计中的应用,编辑团队在《核工程前沿》杂志上策划了一个研究课题,题为“先进核反应堆设计中的人工智能”。收集了五篇文章,它们涵盖了人工智能在先进核反应堆设计中的不同但重要的方面。
新核电站最重要的安全目标是排除早期和高释放的堆芯熔化事故。到目前为止,Doel-4 和 Tihange-3 尚未满足这一安全要求。新核电站必须满足这一基本安全目标。另一方面,对于现有核电站,人们承认实施这些要求可能“不合理可行”。因此,监管机构的任务仍然是检查计划的措施在多大程度上足以满足对民众的必要保护要求。民众和政界人士有权知道 Doel-4 和 Tihange-3 与当前安全要求相比存在哪些不足之处。此外,他们应该收到有关哪些升级在技术上可行但出于经济原因不应进行的信息。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
图 1. SMR 研究团队组织结构图...................................................................................................... 23 图 2. 左图:库克核电站应急准备地图[50]。右图:印第安纳州密歇根州电力网覆盖范围[49]......................................................................................................... 32 图 3. 本研究中审查的反应堆,按冷却剂类型排序 [7]......................................................................... 34 图 4. 本研究中审查的反应堆,作为出口温度和功率输出(MWth)的函数 [7]......................................................... 35 图 5. 国家能源局 SMR 仪表板识别的 SMR 类型管道状态 [7]......................................................... 35 图 6. 国家能源局 SMR 仪表板识别的 SMR 许可进度。[7]......................................................... 37 图 7. SMR 许可活动在各国核安全监管机构中的分布。 [7] ................................................................................................................................ 37 图 8. 按冷却剂类型组织的各种 SMR 设计示例列表 .............................................................. 40 图 9. SMR-300 反应堆 [80] ........................................................................................................ 48 图 10. BWRX-300 RPV 内部图 [62] ...................................................................................... 49 图 11. VOYGR 反应堆模块 [88]............................................................................................. 51 图 12. Rolls-Royce SMR 发电站 [92] ............................................................................................. 53 图 13. Xe-100 燃料和核心图 [98] ........................................................................... 54 图 14. 钠反应堆建筑示意图 [104] ......................................................................... 56 图 15. KP-FHR 反应堆设计 [110] ........................................................................................ 58 图 16. 2022 年至 2030 年期间美国能源消费预期增长的因素 [122] ............................................................................................. 63 图 17. 自 1950 年以来美国的新增装机容量 [124] ............................................................................. 63 图 18. 印第安纳州按燃料类型划分的发电量 [126] ............................................................................. 64 图 19. 核电站按月停运情况 [130] ............................................................................. 65 图 20. 加权等效强制停运率 [132] ............................................................................. 66 图 21. 印第安纳州枢纽的日前和实时价格(2021-2023) [135] .............................. 67 图 22。2010 年 11 月法国核反应堆的负荷跟踪 [136] .............................................................................. 68 图 23. 许可和批准要求概述 .............................................................................................. 71 图 24. 施工许可流程 [146] .............................................................................................. 72 图 25. 运行许可流程 [146] ...................................................................................................... 73 图 26. COLA 流程 [146] ...................................................................................................... 74 图 27. 左图:MISO 服务的美国区域 [166]。右图:PJM 互联网络服务的美国区域 [167] ......................................................................................................................... 78 图 28. 反应堆生命周期的简化示例 [168](图中的块大小与每个过程所需的时间无关) ............................................................................. 79 图 29. NuScale 2018 年的预计时间表 [169] ......................................................................................... 80 图 30. 核电项目时间表说明 [176] ......................................................................................... 82 图 31. 自 2000 年以来全球新核电建设成本 [178] ......................................................................... 84 图 32. 各国家/地区建造的反应堆 [179] ......................................................................................... 85...................................................................... 85...................................................................... 85
• 在填充阶段,水池接收流入的废水。流入物为活性污泥中的微生物提供食物,为生化反应的发生创造环境。 • 为了保持合适的 F/M(食物与微生物)比率,废水应