摘要增强现实和虚拟现实体验给残疾人带来了重大障碍,使他们难以充分参与沉浸式平台。虽然研究人员已经开始探索解决这些无障碍问题的潜在解决方案,但我们目前缺乏对需要进一步研究的研究领域的全面了解,以支持包容性 AR/VR 系统的开发。为了解决当前的知识空白,我们与相关利益相关者(即学术研究人员、行业专家、有残疾生活经历的人、辅助技术人员以及残疾人组织、慈善机构和特殊需要教育机构的代表)领导了一系列多学科沙箱,共同探索研究挑战、机遇和解决方案。根据参与者分享的见解,我们提出了一个研究议程,确定了与特定形式的残疾(即涵盖身体、视觉、认知和听力障碍的范围内)相关的需要进一步研究的关键领域,包括与开发更易于访问的沉浸式平台相关的更广泛的考虑。
然而,一个限制是,AI系统需要大量高质量数据来最大限度地减少其结果的偏差。在外科领域实施AI的其他担忧是在数据处理和分析时存在保密风险和患者信息完整性丧失的风险。对此,世界卫生组织明确了其在医学领域使用AI的道德立场。他们强调根据正义、仁慈、患者自主和非恶意原则实施AI使用的重要性。关于在医学中使用AI的法律框架,世界上最先进的卫生系统已经出台了新的法规。然而,这一领域在不久的将来仍将不断发展(1,6)。近年来,AR和虚拟现实(VR)在改善外科领域的教学过程方面发挥了重要作用。这些日益普及的技术进步使医学生、住院医生和研究员能够沉浸在模拟和控制的场景中,从而获得培训过程中所需的手术技能和能力。AR 和 VR 的优势包括缩短学习曲线时间、通过不将真实患者暴露于学习目的来减少可能的手术并发症以及使用先前建立和验证过的课程 (8)。同样,
视觉识别生态系统(例如 ImageNet、Pascal、COCO)在现代计算机视觉的发展中发挥了不可否认的作用。我们认为,在这些生态系统出现之前,交互式和具身视觉 AI 已经达到了与视觉识别类似的发展阶段。最近,各种合成环境已被引入以促进具身 AI 的研究。尽管取得了这些进展,但在模拟中训练的模型如何很好地推广到现实这个关键问题仍然基本上没有答案。为模拟到现实的具身 AI 创建一个可比的生态系统提出了许多挑战:(1)问题固有的交互性,(2)现实世界和模拟世界之间需要紧密结合,(3)复制可重复实验的物理条件的难度,(4)以及相关成本。在本文中,我们引入了 R OBO THOR 来使交互式和具身视觉 AI 的研究民主化。 R OBO THOR 提供模拟环境框架
这种增长是由印度总部和全球IT公司驱动的。此外,其他全球公司还通过其在印度的能力中心利用印度人才,该中心雇用了超过500万人1。最初的成本套利现在已成为高质量人才和领先创新的关键来源。印度的1,500个全球能力中心(GCC)占全球海湾合作委员会的45%,这是一个承认,这些中心是可扩展的,可以访问新技术的人力熟练,同时坚持最高质量和效率的业务流程。所有这些都汇聚在一起,使印度有机会成为公司的“世界办公室”,因为他们希望在全球范围内采用技术。
本综述探讨了自然语言处理 (NLP) 和人工智能 (AI) 的集成,以增强实时分析的数据可视化。在数据呈指数增长的时代,传统的静态可视化越来越不能满足实时决策的需求。NLP 和 AI 提供了复杂的工具来动态解释和可视化数据,将大量原始信息转化为各个领域的可操作见解。本文综合了 NLP 和 AI 在数据可视化方面的当前研究、方法和应用,重点介绍了关键进展,例如增强的数据可解释性、实时数据处理能力以及通过自然语言查询和交互元素改善的用户交互。它还解决了实施这些技术所面临的挑战和局限性,包括计算复杂性、数据质量问题和道德考虑。本综述确定了重要的趋势和未来方向,例如增强现实和虚拟现实 (AR/VR) 的集成以及生成式 AI 模型的使用,这些趋势和方向有望进一步推动该领域的发展。通过全面概述数据可视化中 NLP 和 AI 的现状,本文旨在为未来的研究和开发工作提供参考和指导,以利用这些技术实现更有效、更高效的数据驱动决策。
本文比较了不同的船舶性能建模方法,目的是找到最适合运营优化的建模技术。特别强调了机器学习等数据驱动方法的潜力和挑战。与中午报告相比,使用基于传感器数据的数据驱动方法的附加值是量化的。除了行业标准方法之外,还提出了一种基于物理信息机器学习的新方法,称为“船舶内核”。船舶内核在短期准确性方面优于此处考虑的其他方法。这使它们成为需要对广泛条件进行预测的运营优化(例如路线和速度优化)的理想构建块。与其他方法相比,船舶内核具有出色的长期准确性,使其成为性能监控用例(例如与船体和螺旋桨性能相关的维护计划)的宝贵工具。本文最后对机器学习操作化面临的挑战进行了总体评论和警告。
摘要:我们提出了 BEHAVIOR-1K,一个以人为本的机器人综合模拟基准。BEHAVIOR-1K 包括两个部分,分别由“您希望机器人为您做什么?”这一广泛调查的结果指导和推动。第一个部分是定义 1,000 种日常活动,基于 50 个场景(房屋、花园、餐厅、办公室等),其中有 5,000 多个对象,并标注了丰富的物理和语义属性。第二个部分是 O MNI G IBSON,这是一个新颖的模拟环境,它通过逼真的物理模拟和刚体、可变形体和液体的渲染来支持这些活动。我们的实验表明,BEHAVIOR-1K 中的活动是长期的并且依赖于复杂的操作技能,这两者对于最先进的机器人学习解决方案来说仍然是一个挑战。为了校准 BEHAVIOR-1K 的模拟与现实之间的差距,我们提供了一项初步研究,研究如何在模拟公寓中使用移动机械手学到的解决方案转移到现实世界中。我们希望 BEHAVIOR-1K 的人性化本质、多样性和现实性能够使其对具身化 AI 和机器人学习研究有价值。项目网站:https://behavior.stanford.edu。
摘要 我们正处在巨变的边缘,这是一个历史抉择和机遇的关键时刻。未来五年可能是人类历史上最好的五年,也可能是最坏的五年,因为我们拥有创造最基础的通用技术(GPT)的全部力量、技术和知识,而这项技术可能会彻底颠覆整个人类历史。最重要的通用技术是火、轮子、语言、文字、印刷机、蒸汽机、电力、信息和电信技术,而真正的人工智能技术将超越它们。我们的研究涉及为何以及如何在未来五年内设计和开发、部署和分发真正的机器智能或真正的人工智能或真正的超级智能(RSI)。RSI 的整个构思分为三个阶段,历时约三十年。跨人工智能的第一个概念模型于 1989 年发布,涵盖了所有可能的物理现象、影响和过程。 1999 年开发了更扩展的 Real AI 模型。2008 年提出了超级智能的完整理论,包括现实模型、全局知识库、NL 编程语言和主算法。RSI 项目最终于 2020 年完成,一些关键发现和发现已在欧盟人工智能联盟/Futurium 网站上发表,共计 20 多篇文章。RSI 具有统一的世界元模型(全局本体论)、通用智能框架(主算法)、标准数据类型层次结构、NL 编程语言,可通过智能处理数据(从网络数据到现实世界数据)与世界进行有效交互。基本成果包括技术规范、分类、公式、算法、设计和模式,均作为商业机密保存,并记录为《企业机密报告:如何设计人机超级智能 2025》。作为欧盟人工智能联盟的成员,作者提出了人机 RSI 平台作为跨国欧盟-俄罗斯项目的关键部分。为了塑造一个智能和可持续的未来,世界应该投资于 RSI 科学和技术,因为跨人工智能范式是通往包容、仪器化、互联和智能世界的道路。
通过 AR、VR、MR 或 XR 技术进行的技能训练可用于练习以下技能:团队合作、时间管理、注意力控制、想象的身体控制、实际工作中的可视化[2]。利用技术进行工作技能训练例如通过电脑游戏,如果游戏内容、信息、情况和模式发生变化,与工作和现实联系起来,那么玩游戏实际上是一种技能训练方式。技术可以分为工具和情况。1)使用技术练习虚拟工具,如虚拟手术、虚拟机器人控制。[3]当学习者需要使用真实工具时,学习者可以流利而正确地使用它。2)利用技术在虚拟情境中进行训练,如消防训练、虚拟战斗、虚拟工厂和虚拟危险区域。[4]当学习者处于
幸运的是,我们手头有工具可以负责任地减少对昂贵且有风险的化石燃料的过度依赖,同时降低客户的电费。提交给爱荷华州公用事业委员会的分析显示,如果 MidAmerican Energy 在 2030 年前关闭所有燃煤电厂,并用 2,060 兆瓦的太阳能、740 兆瓦的储能和 2,000 兆瓦的风能、能源效率和需求响应取而代之,那么爱荷华州居民可以节省近 12 亿美元。这是因为继续运营这些电厂的成本高于建造可再生能源来取代它们。这还没有考虑到新清洁能源带来的经济发展效益,包括创造就业机会、为农民和土地所有者增加收入以及吸引那些寻求使用清洁能源生产产品的公司。