人类的生命中有铰接的物体。对清晰的物体的综合理解,即外观,结构,物理特性和语义,将使许多研究社区受益。作为当前的符号对象理解解决方案通常是基于具有无物理属性的CAD模型的合成对象数据集,从而阻止了在视觉和机器人任务中的实现对现实世界应用的满足概括。为了弥合差距,我们提出了AKB-48:一个大规模的对象k nowledge b ase,由48个猫咪的2,037个现实世界3D 3D铰接式对象模型组成。每个对象由知识图Artikg描述。为了构建AKB-48,我们提出了快速的发音知识建模(FARM)管道,可以在10-15分钟内满足铰接对象的Artikg,并在很大程度上降低了Real
将进行测试以确定哪些传感器可以快速、准确且一致地检测高浓度的目标成分。现场和实验室测试将包括使用不同类型的预处理工艺批量测试多个废水样品,以及使用第三方实验室测试验证结果等元素。除了传感技术外,该团队还将寻求将该技术与当前基础设施相结合。为实现这一目标,该团队将与 NESDI 传感器接口和仪器监控 (SIIM) 图形用户界面 (GUI) 项目团队合作。SIIM GUI 技术提供了与常见工业控制系统 (ICS) 接口的框架,并将为该项目将开发的传感系统提供遥测、GUI 和数据网络。
我们介绍了Cyberdemo,这是一种用于机器人模仿学习的新方法,该方法利用了模拟人类的策略来实现现实世界的任务。通过在模拟环境中纳入广泛的数据增强,CyberDemo在转移到现实世界中的传统现实世界中的表现优于传统的现实世界中的演示,从而处理了多样化的物理和视觉条件。无论其负担能力和在数据收集中的便利性如何,Cyberdemo Opper-pers-pers-pers-pers of-lip-term-term of基线方法在跨不同任务的成功率方面,并具有以前未见的对象的普遍性。例如,尽管只有人类的示范插入三瓣,但它仍可以旋转新型的四阀和五角谷。我们的研究证明了模拟人类示范对现实世界灵活操纵任务的重要潜力。更多详细信息可以在https://cyber-demo.github.io/
计算机视觉技术在自动驾驶汽车的感知堆栈中起着核心作用。使用此类方法来感知给定数据的车辆周围环境。3D激光雷达传感器通常用于从场景中收集稀疏的3D点云。然而,根据人类的看法,这种系统努力鉴于那些稀疏的点云,因此很难塑造现场的看不见的部分。在此问题中,场景完成任务旨在预测LiDAR测量中的差距,以实现更完整的场景表示。鉴于最近扩散模型作为图像的生成模型的有希望的结果,我们建议将其扩展以实现单个3D LIDAR扫描的场景。以前的作品使用了从LiDAR数据提取的范围图像上使用扩散模型,直接应用了基于图像的扩散方法。差不多,我们建议直接在这些点上操作,并介绍尖锐的和降解的扩散过程,以便它可以在场景规模上有效地工作。与我们的方法一起,我们提出了正规化损失,以稳定在denoising过程中预测的噪声。我们的实验评估表明,我们的方法可以在单个LIDAR扫描中完成场景,作为输入,与最新场景完成方法相比,产生了更多详细信息的场景。我们认为,我们提出的扩散过程公式可以支持应用于场景尺度点云数据的扩散模型中的进一步研究。1
液体分析是跟踪食品、饮料和化学制造等行业是否符合严格的工艺质量标准的关键。为了在线并在最感兴趣的点分析产品质量,自动监控系统必须满足小型化、能源自主性和实时操作方面的严格要求。为了实现这一目标,我们介绍了在神经形态硬件上运行的人工味觉的第一个实现,用于连续边缘监控应用。我们使用固态电化学微传感器阵列来获取多变量、随时间变化的化学测量值,采用时间滤波来增强传感器读出动态,并部署基于速率的深度卷积脉冲神经网络来有效融合电化学传感器数据。为了评估性能,我们创建了 MicroBeTa(微传感器味道测试),这是一个用于饮料分类的新数据集,包含 3 天内进行的 7 小时时间记录,包括传感器漂移和传感器更换。我们实现的人工品味在推理任务上的能效比在其他商用低功耗边缘 AI 推理设备上运行的类似卷积架构高出 15 倍,在 USB 棒外形尺寸中包含的单个英特尔 Loihi 神经形态研究处理器上实现了比传感器读数采样周期低 178 倍以上的延迟和高精度(97%)。
幸运的是,我们手头有工具可以负责任地减少对昂贵且有风险的化石燃料的过度依赖,同时降低客户的电费。提交给爱荷华州公用事业委员会的分析显示,如果 MidAmerican Energy 在 2030 年前关闭所有燃煤电厂,并用 2,060 兆瓦的太阳能、740 兆瓦的储能和 2,000 兆瓦的风能、能源效率和需求响应取而代之,那么爱荷华州居民可以节省近 12 亿美元。这是因为继续运营这些电厂的成本高于建造可再生能源来取代它们。这还没有考虑到新清洁能源带来的经济发展效益,包括创造就业机会、为农民和土地所有者增加收入以及吸引那些寻求使用清洁能源生产产品的公司。
摘要 — 双态天线大规模平面阵列的设计有助于在最小化旁瓣电平 (SLL) 和控制第一零波束宽度 (FNBW) 变化的约束下使用遗传算法来降低能耗。通常,平面阵列用于基于电池使用的通信应用,例如便携式雷达。本文使用实数编码遗传算法 (RCGA) 优化了具有 1600 个相同天线元件的均匀矩形阵列 (URA)。执行优化过程是因为以 ON-OFF 状态的形式找到辐射元件电流激励权重的最佳集合以节省消耗的功率。因此,选择了阵列因子 (AF) 的最高性能和所需的波束宽度。本文提出的主要贡献是能够使用 RCGA 算法通过将阵列划分为阵列子集来优化大量阵列元素。执行模拟结果以验证遗传稀疏 URA 的有效性。通过选择能够高效加扰的天线元件,相当于节省了 24.4% 的能耗。本文使用 MATLAB CAD Ver. 2018a 作为平台获得了结果。索引术语 —RCGA、节能、规划器阵列、成本函数、双态天线。
他没有从人们所熟悉的俄罗斯“网络水军”或自封的“互联网研究机构”及其对 2016 年美国总统大选的操纵开始,而是从菲律宾开始,以此来解除读者的戒心。通过这样做,他含蓄地指出,虽然俄罗斯是应对虚假信息的核心,但它现在只是一个更深层次、更普遍的问题的表现。他展示了自发的个人——比如马尼拉的“P”——如何将心理研究与社交媒体上可扩展的操纵活动、表演暴力、抗议或政策行为、网络新闻和固定会议结合起来——以改变选举方式,让大多数读者感到不舒服,强调分裂、替罪羊和错误信息。他展示了这些网络如何经常得到俄罗斯互联网研究机构的支持,模糊了国家界限,因为数字领域的国家公民发现自己被自称是本地的声音所包围,但实际上,这些声音是由受资助的巨魔农场的工人和全球志愿者组成的混合体。