通过 AR、VR、MR 或 XR 技术进行的技能训练可用于练习以下技能:团队合作、时间管理、注意力控制、想象的身体控制、实际工作中的可视化[2]。利用技术进行工作技能训练例如通过电脑游戏,如果游戏内容、信息、情况和模式发生变化,与工作和现实联系起来,那么玩游戏实际上是一种技能训练方式。技术可以分为工具和情况。1)使用技术练习虚拟工具,如虚拟手术、虚拟机器人控制。[3]当学习者需要使用真实工具时,学习者可以流利而正确地使用它。2)利用技术在虚拟情境中进行训练,如消防训练、虚拟战斗、虚拟工厂和虚拟危险区域。[4]当学习者处于
摘要。现实世界图像超分辨率(RISR)旨在从退化的低分辨率(LR)输入中重新结构高分辨率(HR)图像,以应对诸如模糊,噪声和压缩工件之类的挑战。与传统的超分辨率(SR)不同,该方法通过合成的下采样来典型地生成LR图像,而RISR则是现实世界中降级的复杂性。为了有效地应对RISR的复杂挑战,我们适应了无分类器指导(CFG),这是一种最初用于多级图像生成的技术。我们提出的方法,真实的SRGD(带有无分类器引导扩散的现实世界图像超分辨率),将RISR挑战分解为三个不同的子任务:盲图恢复(BIR),常规SR和RISR本身。然后,我们训练针对这些子任务量身定制的类别条件SR扩散模型,并使用CFG来增强现实世界中的超分辨率效果。我们的经验结果表明,实际SRGD超过了定量指标和定性评估中的现有最新方法,如用户研究所证明的那样。此外,我们的方法在
摘要 我们正处在巨变的边缘,这是一个历史抉择和机遇的关键时刻。未来五年可能是人类历史上最好的五年,也可能是最坏的五年,因为我们拥有创造最基础的通用技术(GPT)的全部力量、技术和知识,而这项技术可能会彻底颠覆整个人类历史。最重要的通用技术是火、轮子、语言、文字、印刷机、蒸汽机、电力、信息和电信技术,而真正的人工智能技术将超越它们。我们的研究涉及为何以及如何在未来五年内设计和开发、部署和分发真正的机器智能或真正的人工智能或真正的超级智能(RSI)。RSI 的整个构思分为三个阶段,历时约三十年。跨人工智能的第一个概念模型于 1989 年发布,涵盖了所有可能的物理现象、影响和过程。 1999 年开发了更扩展的 Real AI 模型。2008 年提出了超级智能的完整理论,包括现实模型、全局知识库、NL 编程语言和主算法。RSI 项目最终于 2020 年完成,一些关键发现和发现已在欧盟人工智能联盟/Futurium 网站上发表,共计 20 多篇文章。RSI 具有统一的世界元模型(全局本体论)、通用智能框架(主算法)、标准数据类型层次结构、NL 编程语言,可通过智能处理数据(从网络数据到现实世界数据)与世界进行有效交互。基本成果包括技术规范、分类、公式、算法、设计和模式,均作为商业机密保存,并记录为《企业机密报告:如何设计人机超级智能 2025》。作为欧盟人工智能联盟的成员,作者提出了人机 RSI 平台作为跨国欧盟-俄罗斯项目的关键部分。为了塑造一个智能和可持续的未来,世界应该投资于 RSI 科学和技术,因为跨人工智能范式是通往包容、仪器化、互联和智能世界的道路。
摘要 — 双态天线大规模平面阵列的设计有助于在最小化旁瓣电平 (SLL) 和控制第一零波束宽度 (FNBW) 变化的约束下使用遗传算法来降低能耗。通常,平面阵列用于基于电池使用的通信应用,例如便携式雷达。本文使用实数编码遗传算法 (RCGA) 优化了具有 1600 个相同天线元件的均匀矩形阵列 (URA)。执行优化过程是因为以 ON-OFF 状态的形式找到辐射元件电流激励权重的最佳集合以节省消耗的功率。因此,选择了阵列因子 (AF) 的最高性能和所需的波束宽度。本文提出的主要贡献是能够使用 RCGA 算法通过将阵列划分为阵列子集来优化大量阵列元素。执行模拟结果以验证遗传稀疏 URA 的有效性。通过选择能够高效加扰的天线元件,相当于节省了 24.4% 的能耗。本文使用 MATLAB CAD Ver. 2018a 作为平台获得了结果。索引术语 —RCGA、节能、规划器阵列、成本函数、双态天线。
他没有从人们所熟悉的俄罗斯“网络水军”或自封的“互联网研究机构”及其对 2016 年美国总统大选的操纵开始,而是从菲律宾开始,以此来解除读者的戒心。通过这样做,他含蓄地指出,虽然俄罗斯是应对虚假信息的核心,但它现在只是一个更深层次、更普遍的问题的表现。他展示了自发的个人——比如马尼拉的“P”——如何将心理研究与社交媒体上可扩展的操纵活动、表演暴力、抗议或政策行为、网络新闻和固定会议结合起来——以改变选举方式,让大多数读者感到不舒服,强调分裂、替罪羊和错误信息。他展示了这些网络如何经常得到俄罗斯互联网研究机构的支持,模糊了国家界限,因为数字领域的国家公民发现自己被自称是本地的声音所包围,但实际上,这些声音是由受资助的巨魔农场的工人和全球志愿者组成的混合体。
摘要 为了帮助制造企业实现人工智能 (AI) 的价值,我们开始了为期六年的研究和实践,以增强流行且广泛使用的 CRISP-DM 方法。我们通过添加“操作和维护”阶段以及嵌入基于任务的框架将任务与技能联系起来,将 CRISP-DM 扩展为 AI 解决方案的连续、主动和迭代生命周期。我们的主要发现涉及操作和维护 AI 解决方案和管理 AI 漂移的艰难权衡和隐性成本,以及确保在整个 CRISP-DM 阶段中存在领域、数据科学和数据工程能力。此外,我们展示了数据工程如何成为 AI 工作流程中必不可少但经常被忽视的一部分,对这三种能力的参与轨迹提供了新颖的见解,并说明了如何将增强的 CRISP-DM 方法用作 AI 项目的管理工具。
将可再生能源集成到现代智能电网中,由于能源产生的可变性和不可预测性,提出了重大挑战。对可再生能源输出的准确实时预测对于确保网格稳定性,优化能量分布并最大程度地减少了能量浪费至关重要。本研究探讨了针对智能电网中实时可再生能源预测的可扩展监督学习算法的开发和应用。
本文比较了不同的船舶性能建模方法,目的是找到最适合运营优化的建模技术。特别强调了机器学习等数据驱动方法的潜力和挑战。与中午报告相比,使用基于传感器数据的数据驱动方法的附加值是量化的。除了行业标准方法之外,还提出了一种基于物理信息机器学习的新方法,称为“船舶内核”。船舶内核在短期准确性方面优于此处考虑的其他方法。这使它们成为需要对广泛条件进行预测的运营优化(例如路线和速度优化)的理想构建块。与其他方法相比,船舶内核具有出色的长期准确性,使其成为性能监控用例(例如与船体和螺旋桨性能相关的维护计划)的宝贵工具。本文最后对机器学习操作化面临的挑战进行了总体评论和警告。