数字时代的数学教育(MEDE)系列探讨了数字技术支持数学教学和网络Geners学习的方式,也关注教育辩论。每卷都将在数学教育中解决一个特定问题(例如,视觉数学和网络学习;基于包容性和社区的电子学习;在数字时代的教学),以探索在数字技术的情况下探索有关教学和学习数学的基本假设。本系列旨在吸引各种各样的读者,包括:数学教育研究人员,数学家,认知科学家和计算机科学家,教育研究生,政策制定者,教育软件开发人员,管理人员和教师实践者。除其他外,本系列发表的高质量科学工作将解决与新一代数学学生的教学法和数字技术适用性有关的问题。该系列还将为读者提供更深入的了解,以了解创新的教学实践如何出现,进入课堂,并塑造成长为技术的年轻学生的学习。该系列还将介绍如何桥接理论和实践,以增强当今学生的不同学习方式,并将他们的动力和自然兴趣转变为对有意义的数学学习的额外支持。该系列为发现数字技术对学习成果的影响及其整合到有效的教学实践中的影响提供了机会;数学教育软件在教学和课程转换方面的潜力;以及数学电子学习的力量,是包容性和基于社区的,但个性化和实践的力量。
Wei等人,《经过思考链》提示在大语言模型中引起推理,Neurips 2022。nye等人,展示您的作品:与语言模型中间计算的刮擦程序,2021。
我们提出了一种基于辩论动态的知识图谱自动推理新方法。其主要思想是将三重分类任务构建为两个强化学习代理之间的辩论游戏,它们提取论据(知识图谱中的路径),目标是分别促使事实为真(论点)或事实为假(反论点)。基于这些论据,一个称为评判者的二元分类器决定事实是真是假。这两个代理可被视为稀疏的对抗性特征生成器,为论点或反论点提供可解释的证据。与其他黑箱方法相比,这些论据让用户能够了解评判者的决定。由于这项工作的重点是创建一种可解释的方法以保持具有竞争力的预测准确率,因此我们在三重分类和链接预测任务上对我们的方法进行了基准测试。因此,我们发现我们的方法在基准数据集 FB15k-237、WN18RR 和 Hetionet 上的表现优于几个基线。我们还进行了一项调查,发现提取的参数对用户很有帮助。
视觉问题回答(VQA)是一项具有挑战性的任务,需要通过关系推理对图像和问题进行跨模式理解,从而导致正确答案。为了弥合这两种方式之间的语义差距,以前的作品着重于所有可能对的单词区域对齐,而无需更多地关注相应的单词和对象。同样处理所有对,而无需考虑关系一致性,这是模型的性能。在本文中,为了对齐关系对并整合VQA系统的解释性,我们提出了一个跨模式的关系构建网络(CRRN),以掩盖不一致的注意力图,并突出相应单词对的全部潜在比对。具体来说,我们提出了两个相关性掩码,用于模式间和模式内突出显示,从而推断出图像中句子或区域中越重要的单词。可以通过掩盖未对齐的关系来增强一致对的关注相互关系。然后,我们提出了两个新颖的损失L CMAM和L SMAM,并具有明确的超级视觉,以捕获视觉和语言之间的细粒度相互作用。我们进行了彻底的实验来证明有效性并实现了GQA基准的竞争性绩效,以达到61.74%。
根据所执行的程序和获得的证据,我们没有注意到任何情况使我们相信,公司在年度报告第 92 至 329 页中确定的可持续性信息与选定的 GRI 指标(以合并报告为基础)和选定的 BRSR 属性(不属于 BRSR 核心)有关,在 2023 年 4 月 1 日至 2024 年 3 月 31 日期间以独立报告为基础,在有限保证下,并未在所有重大方面按照世界资源研究所 (WRI)/世界可持续发展工商理事会 (WBCSD) 温室气体 (GHG) 议定书(企业会计和报告)编制
从单个视图中恢复3D场景几何形状是计算机视觉中的基本问题。虽然经典的深度估计方法仅推断出2.5D场景表示为图像平面,但最新的基于辐射范围的aperach是重建完整的3D代表。然而,这些方法仍然在被占地的区域困难,因为没有视觉观察的几何形状需要(i)周围的语义知识,以及(ii)关于空间上下文的推理。我们提出了Kyn,这是一种单视场景重建的新方法,其原因是语义和空间上下文来预测每个点的密度。我们引入了一个视觉模块模块,以使用细粒度的语义信息丰富点特征。我们通过语言引导的空间注意机制在整个场景中汇总了点表示,以产生意识到3D语义环境的每点密度预测。我们表明,与预测每个3D点的密度相比,Kyn改善了3D形状的恢复。我们在Kitti-360上实现了最新的场景和对象重建结果,并且与先前的工作相比,零弹性概括的改进。项目页面:https://ruili3.github.io/kyn。
事件摄像机最近显示出对实用视觉任务的有益,例如行动识别,这要归功于其高度分辨率,功率效率和引起的隐私问题。然而,当前的研究是由1)处理事件的困难,因为它们的持续时间长时间和动态动作具有复杂而模棱两可的语义; 2)事件框架表示带有固定堆栈的冗余作用。我们发现语言自然传达了丰富的语义信息,从而使其在降低疾病的不确定性方面非常出色。鉴于此,我们提出了一种新颖的方法,这是第一次解决基于事件的动作识别的跨模式概念化的识别。我们的确切确切带来了两项技术贡献。首先,我们提出了一个自适应细粒事件(AFE)表示,以自适应地过滤固定对象的重复事件,同时保留动态的对象。这巧妙地增强了精确的性能,而无需额外的计算成本。然后,我们提出了一个基于概念推理的不确定性估计模块,该模块模拟了识别过程以丰富语义代表。尤其是,概念推理基于动作语义建立时间关系,而不必要的估计可以解决基于分布表示的动作的语义不确定性。实验表明,在PAF,HADDV和我们的SEACT数据集上,我们的确切确切识别获得了94.83%(+2.23%),90.10%(+2.23%),90.10%(+37.47%)和67.24%。
●4801计算机科学I●4838机械制图和设计II●5236计算机科学II●5249计算机科学III:软件开发帽岩石●5250计算机科学III:数据库●5251计算机科学III:信息学III:信息学:信息学●5253 Computer Science III:Cybersecurity II:Cybersecurity II:Cybersecurity II●56 ARTACTECTART●5652 ARTACTECTER●5652 ARTACTECTERCTINTER●5652 ARTACTECTERT●5652 ARTACTECTERCTINTER●5652 ARTACTECTITIC电子和计算机技术II●7197 BIM体系结构●7200电力和电动机的基础●7202制造原理和设计●7223机械设计Capstone●7351计算机科学中的主题●7352 7361计算机科学●7361电子基础●7362电子基础●7362电子技术●7362电子capstone