在2023年,芬兰面临着由2.3.4.4b A(H5N1)病毒引起的高度致病性禽流感,这些病毒从野生鸟类传播到毛皮农场。疫苗接种处于风险的人,例如毛皮和家禽农场工人,兽医和实验室工人,始于2024年6月,使用了由Seqirus生产的MF59-Adjuvant-Adjuvant灭活(H5N8)疫苗(基于2.3.4.4B A/Astrakhan/Astrakhan/32212/2020)。我们研究了39名受试者的两剂量疫苗接种方案后研究了抗体反应。疫苗接种诱导了与疫苗病毒和两种促枝2.3.4.4b病毒相当水平的功能抗体,这与芬兰的皮草动物的暴发或美国的牛有关。在先前未接种的人的两剂疫苗上,使用微隔核酸或血凝蛋白毒素的疫苗病毒的血清保护率为83%(95%CI 70-97%,滴度≥20)和97%(95%CI 90-100%,滴度90-100%,滴度≥40)。在先前H5接种疫苗的个体的子集中,第一个剂量已经导致了血清保护滴度,这表明免疫召回。这些数据表明,预计该疫苗将对当前循环的H5进化枝2.3.4.4b病毒进行交叉保护。
此预印本版的版权持有人于2025年2月13日发布。 https://doi.org/10.1101/2025.02.12.12.25322159 doi:medrxiv preprint
cajal-retzius细胞(CRS)是发育中的大脑皮层的短暂神经元类型。多年来,它们已被证明或提议在新皮质和海马形态发生,回路形成,脑进化和人类病理学中发挥重要作用。由于其寿命短,CR被描绘成纯粹的发育细胞类型,其产生和主动消除都是正确的大脑发育所必需的。在这篇综述中,我们提出了一些发现,使我们能够更好地欣赏这种非常特殊的细胞类型的身份和多样性,并提出了应该被视为Cajal-Retzius细胞的统一定义,尤其是在与非哺乳动物物种或类器官一起工作时。此外,我们强调了最近的一系列研究表明,CRS在功能和功能障碍性皮质网络组装中的重要性。
摘要:抗菌肽(AMP)均由所有表现出抗菌活性的活生物体产生,代表了对病原体的先天防御的第一线。在这种情况下,建议放大器作为古典抗生素的替代方法。然而,一些研究人员报告了他们参与了将它们定义为多功能放大器(MF -AMP)的不同过程。相关地,这些药物充当了人类有机体对几种dan -dan -de -fore刺激的内源反应。仍然,它们在其他生物体中被鉴定出来,并评估其抗癌治疗方法。div div div铬蛋白A(CGA)是在肾上腺髓质中首次发现的糖磷蛋白,但也在几个细胞中产生。CGA可以产生不同的派生AMP,从而影响众多生理过程。 皮肤肽(DRSS)是从Phyllomedusidae家族的几只叶青蛙的皮肤分泌物中分离出的α-螺旋形的多阳离子肽的家族。 几个DRS被识别为AMP,到目前为止,已经进行了65多种DRS。 最近,这些外源分子的抗癌活性是特征的。 在这篇综述中,我们总结了这两类MF -AMP的作用,作为CGA衍生肽内源性分子的一个例子,能够调节炎症,但也作为DRS的外源摩尔菌Cules,促进抗癌活性。CGA可以产生不同的派生AMP,从而影响众多生理过程。皮肤肽(DRSS)是从Phyllomedusidae家族的几只叶青蛙的皮肤分泌物中分离出的α-螺旋形的多阳离子肽的家族。几个DRS被识别为AMP,到目前为止,已经进行了65多种DRS。最近,这些外源分子的抗癌活性是特征的。在这篇综述中,我们总结了这两类MF -AMP的作用,作为CGA衍生肽内源性分子的一个例子,能够调节炎症,但也作为DRS的外源摩尔菌Cules,促进抗癌活性。
Anupam Mishra博士在2015年在印度德里大学完成了理学学士学位。,后来,2017年,他在运气大学的化学系现任印度化学系的研究生学习。在S. K. Awasthi教授的指导下,他获得了德里化学系的博士学位。Anupam Mis-Hra博士是科学技术部(DST)的Inspire(SHE)奖学金的获得者,支持他从毕业到毕业后的研究。随后,他因其博士后研究而被DST授予享有声望的Inspire奖学金。另外,他在科学委员会(CSIR)净JRF奖学金奖学金委员会中获得了令人印象深刻的全印度排名(AIR)47。他在著名的国际期刊上有许多出版物,并拥有一项国际专利。他的研究兴趣包括先进的合成方法,药物化学,杂环化学,异质催化,肽化学和药物发现。
a b s t r a c t靶向药物输送系统已成为提高癌症治疗功效和安全性的有前途的方法。本评论重点介绍了旨在为癌症患者实现有针对性和个性化治疗策略的药物输送技术的最新进步。纳米技术,生物材料和分子靶向策略的整合使能够选择性地将治疗剂递送到肿瘤组织的同时最大程度地减少对健康组织的外部影响。各种靶向机制,包括被动和主动靶向策略,利用肿瘤的独特生理特征,例如异常的脉管系统,过表达的受体和微环境改变,以实现肿瘤组织中药物的选择性积累和保留。基于纳米颗粒的药物输送系统,例如脂质体,聚合物纳米颗粒和无机纳米颗粒,在药物负荷能力,持续释放和肿瘤靶向方面具有优势,使其成为目标癌症治疗的有吸引力的平台。此外,智能药物输送系统的整合对肿瘤微环境中特定刺激的反应,例如pH,温度或酶活性,有望增强肿瘤特异性和降低全身毒性。组合疗法方法将靶向药物递送与其他治疗方法(例如免疫疗法或光动力疗法)相结合,为克服耐药性提供了协同作用和机会。尽管有这些进步,但仍有一些挑战,包括将临床前研究结果转化为临床可行疗法,监管批准,制造可伸缩性和生物标志物发现。应对这些挑战并接受创新方法对于实现有针对性的药物输送系统在改善患者结局和推进癌症治疗方面的全部潜力至关重要。
术语 缩写 AC 吸收式制冷机 ATES 蓄水层热能储存 BDHC 双向区域供热制冷 BTES 钻孔热能储存 CC 压缩式制冷机 CCCP 传统中央循环泵 CCHP 冷热电联产 CHP 热电联产 COP 性能系数 DC 区域制冷 DH 区域供热 DHC 区域供热制冷 DHW 生活热水 DS 区域系统 DVSP 分布式变速泵 EA 电力调节 EAC 电力调节能力 EC 电动制冷机 EES 工程方程求解器 ESS 储能系统 GSHP 地源热泵 GT 燃气轮机 HEX 热交换器 HP 热泵 HRSG 热回收蒸汽发生器 ICE 内燃机 LTDHC 低温区域供热制冷 MILP 混合整数线性规划 MINLP 混合整数非线性规划 NG 天然气 PGU 发电机组 PHE 板式换热器 PSO 粒子群优化 PV 光伏 RES 可再生能源 SNG 合成天然气 TES 热能储存 TEST 热能储存罐
原发性肿瘤手术是治疗的重要组成部分,因为无法切除的骨肉瘤的生存率较差。骨肉瘤化学敏感性,对甲氨蝶呤,顺式铂,阿霉素,ifosfamide,ifosfamide和Etoposide 9的反应率为19%至40%。从那时起,一线标准治疗尚未修改,包括Neoad Juvant和术后多药化学疗法,与原发性肿瘤的手术切除相关,以及所有剩余的转移性局部定位,如果存在10。除了存在初始转移外,原发性肿瘤对新辅助化学疗法的组织学反应是复发的强烈预后因素4。诊断或复发时化学疗法的加强没有改变患者的结果3,11。在诊断和复发方面,以更有效或毒性方案更有效或毒性方案的广泛努力一直令人失望到现在6。
癌症是全球死亡的主要原因,估计有2000万新的癌症病例,全球970万例癌症死亡。免疫疗法提供了癌症治疗中最开创性发展的创新策略。癌症疫苗是一种免疫疗法的一种形式,可以帮助患者抵抗其他护理标准免疫疗法。另一方面,纳米材料的各种特性在免疫系统的收集,成熟和激活中起着至关重要的作用。基于纳米材料(也称为纳米酮)的癌症疫苗可以通过纳米载体和纳米植物特异性地传递到靶组织和细胞,从而提高效率,从而延长抗肿瘤免疫力的持续时间,并最小化副作用。本文回顾了一些纳米酮在癌症免疫疗法中的研究进展,包括聚合物纳米颗粒疫苗,脂质体纳米颗粒疫苗,基于细胞的基于细胞的纳米颗粒疫苗,无机纳米粒子疫苗,辅助和辅助工作。我们认为,基于聚合物纳米颗粒的纳米赛车目前具有最广泛的应用,而使用mRNA的脂质体纳米酮预计将来会看到更大的发展。我们还认为,纳米诺省可以在预防癌症和治疗中发挥重要作用,尤其是在延长患者的寿命方面。
药物赋形剂(如P-糖蛋白抑制剂)也可以增加药物对肠膜的溶解度和亲和力,增强细胞细胞途径和摄取内吞take虫,并激活淋巴转运途径,从而增加口服药物的生物利用度。本综述旨在通过评估P-糖蛋白流出蛋白在渗透性和药代动力学研究中评估P-糖蛋白外排的元数据来审查和评估药物赋形剂作为P-糖蛋白通透性抑制剂的性能。综述结果是药物赋形剂,已证明是来自表面活性剂和聚合物基团的P-糖蛋白抑制剂的有效,分别是TPGS和Poloxamer 188。与常规配方相比,所有将药物赋形剂掺入P-gp抑制剂的纳米系统都在提高口服药物的渗透性和生物利用度方面均具有潜力。这些系统的有效性已通过体外(CACO-2细胞),Ex Vivo(Ever the ted肠囊),原位(SPIP)和体内(AUC)方法评估。