我们表明,通过光辐射压力通过非保守耦合,可以在线性振荡器的集合中产生连续的时间晶体状态。这种新机制全面地解释了用光照明的一系列纳米线中的时间晶体状态的观察结果[nat。物理。19,986(2023)]。与非线性同步方案根本不同,它与广泛的相互作用多体系统有关,包括化学,生物学,天气和纳米级物质领域。时间晶体 - 一种具有自发损坏的时间翻译对称性的物质状态,从理论上讲是十多年前的[1-4]。随后理解,自然禁止在封闭系统中破坏连续的时间翻译对称性[5]。然而,具有断裂的离散时间翻译对称性的时间晶体,其中外部周期力以下和谐频率自发振荡,已经在各种捕获的离子和原子,固态旋转和超导二极管系统中实现了实验[4]。打破连续时间翻译对称性的开放系统更加紧密地意识到原始建议的精神,并代表了一种新的物质状态。连续时间晶体是一个多体系统,其中连续的时间翻译对称性自发地分解为周期性运动,以响应于任意弱的扰动,这是通过一阶,超高的破坏相变(将其与经典振荡现象区分开来)。在少数kelvin温度下的半导体非线性电子核自旋系统的缓慢振荡动力学中看到了这种行为[6];在室温下的雷德伯格气体强烈相互作用中[7];并在光学腔中的光学泵送耗散性玻璃体冷凝物中[8]。在后者中,时间周期性的光发射和空间周期性的原子密度自发出现,因此系统构成了连续的时空晶体。
I.晶体结构和晶体衍射1课程摘要1练习9 1:某些晶体结构的描述9 2:单位质量质量晶体质量12 3:各种晶体结构的构造12 4:晶格行14 5A:晶格行和网状平面14 5B:晶格行和续线14 6:互动的距 8: Atomic planes and Miller indices: application to lithium 16 9: Packing 17 10a: Properties of the reciprocal lattice 20 10b: Distances between reticular planes 21 11: Angles between the reticular planes 22 12: Volume of reciprocal space 23 13: Reciprocal lattice of a face-centered cubic structure 23 14: Reciprocal lattice of body-centered and face-centered cubic structures 25 15: X射线衍射由一排相同的原子26 16:X射线衍射由有限长度的一排原子28 17:2d中的Bravais晶格:在石墨层中应用(Graphene)31 18a:Ewald构造和结构因子的结构和结构因子33 18b:tri-Atomic基础的结构因子; Ewald的结构在倾斜发生率(Ex。18a)37
Unit-1: Crystal Structure and Reciprocal lattice: Review of different kinds of matter-nature of bonding-Crystal structure – Bravais lattice – Unit cell, Wigner -Seitz cell- Index system for crystal planes – miller planes –point groups– space groups–screw axes–glide planes- concept of Reciprocal lattice – Brillouin zone of SC, BCC and FCC and its properties in reciprocal lattice – Fourier analysis of the basis – geometrical structure factor - interpretation of Bragg‟s equation Unit-2: Phonon Physics: Elastic Vibrations of one dimensional mono atomic lattice – vibrations of one-dimensional diatomic lattice – phonons momentum of phonons – phonon heat capacity and density of states – Debye and Einstein model of density of states – Anharmonic crystal interaction - thermal扩展 - 导热率 - UMKLAPP过程单元3:自由电子理论:Drude理论 - 一维盒中的自由电子气体 - 三维气体中的自由电子 - 状态的密度 - FD统计(无衍生) - k-空间和游离电子气体和自由电子热量 - 电子特定热量 - 电子和热电导率 - 电导率 - Wiedeman Franz Life
因此(m',n',p',q')=(m - u,n -v,p,q)。可以进行相同的演示,以通过Adsrocate层相互晶格向量K'UV进行翻译,在这种情况下,指数为(m',n',p',q')=(m,n,n,n,n,p - u,q-u,q-v),对Moir'e波维克eavector Waveector Weake in e q e q eq que q eq que q e q eq。(7)。图S1显示了由α -bi/mos 2制成的任意系统的相互晶格,由θ= 10°扭曲,互惠截止k 0 = k'0 = 1。0˚A - 1。2D系统的性质在这里并不重要。由于其低对称性(在六角形晶格上的矩形不相称),我们将其用作例证。MOS 2和α -BI(以及相互晶格)的Brillouin区域以黑色和红色表示,M MNPQ的集合以浅蓝色显示。在本节中严格证明的那样,在所有布里渊区中重复了M MNPQ的集合,但随着K的增加,每个Brillouin区的数量减小,第一个Brillouin区域是人口最多的。在较大K处的M MNPQ密度降低是有限倒数截止的结果。
在数据预处理后,软件包的核心部分是将角度数据转换为倒数空间。这是在下面使用xRayutilities.permiment -module`详细描述的。实验模块中提供的类提供了帮助执行X射线衍射实验的例程。这包括计算衍射角(如下所述)的方法(如下所述),以对齐晶体样品并在角度和相互空间之间转换数据。对于各种GONIOMETER几何形状,从角到相互空间的转换非常通用。如本文所述,它与线性和区域检测器结合使用特别有用。在标准案例中,用户只需要初始化的例程,该例程预先定义了特定的Goniemeter几何形状,例如流行的四胎和六圈几何形状。
我们证明了非型型超级级别相变的出现和在腔量子量子电动力学系统中的新型多政治性,其中两级原子与两个窃窃私语模式微地位的两种反向传播模式相互作用。腔体以一定角度的速度旋转,并通过单向参数抽水χ22非线性挤压。腔旋转和方向挤压的组合导致非reciprocal的一阶和二阶超级相变。这些过渡不需要Ultrastrong Atom-Field耦合,并且可以通过外部泵场轻松控制。通过对哈密顿系统系统的完整量子描述,我们在相图中确定了两种类型的多个智力点,这两种点都表现出可控的非交流点。这些结果为在光结构系统中对超级级过渡和多政治行为的全面操纵打开了新的门,并在工程各种集成的非认定量子设备方面进行了潜在应用。
图1:水百合和实验工作流程中种子结构的概述。a)自摄取的N. thermarum(Nt)和Dimorpha(ND)的年轻种子,以及两个物种之间的相互交叉。在所有种子中,年轻的胚胎都被细胞,二倍体胚乳包围,而二倍体胚乳又被母体营养储存组织(Perisperm)所包围。b)对于这项研究,生成了三个主要数据集来定义种子特征。全基因组DNA甲基化的特征是胚胎和成熟种子和叶片组织分离的胚胎和胚乳。全基因组DNA甲基化的特征是幼虫的年轻胚乳,来自嗜热猪笼草和二甲状腺菌的倒数杂交种子。RNA-seq数据,用于从相互交叉的种子,以及自由的h. thermarum和Dimorpha种子中的幼植物中收集的。