下一代加速器概念取决于光束分布的精确形状,要求同样精确的诊断方法,能够在6维相位空间内重建光束分布。然而,使用常规诊断技术在6维束分布中的复杂特征的表征需要数百次测量,使用许多小时的宝石时间。需要新颖的诊断技术,以大大减少重建详细的高维束特征所需的测量数量,作为精确光束塑造的反馈。在这项研究中,我们提出了一种使用6维光束分布和可区分束动力学模拟的生成机器学习模型来分析实验测量的方法。我们在模拟和实验中证明了使用分析技术,常规的光束操作和诊断可用于重建详细的6维相位空间分布,使用少于20个梁测量值,而没有事先培训或数据收集。这些开发实现了详细的高维相空间信息,作为在线反馈,以精确控制高级加速器应用中的光束分布,可用于提高我们对复杂加速器光束动力学的理解。
摘要 - 这项工作的目的是通过利用视频中音频和视觉流的自然共发生来研究跨模式自我监管的预训练对语音重新构造的影响。我们提出的LIPSOUND2由编码器 - 二次结构和位置意识到的注意机制组成,以将面部图像序列映射到MEL尺度频谱图,而无需任何人类注释。提出的LIPSOUND2模型是在〜2400-h多语言(例如英语和德语)音频数据(Voxceleb2)上首次预先训练。为了验证所提出的方法的普遍性,我们随后在域特异性数据集(网格和TCD-TIMIT)上进行了预训练的模型,以进行英语语音重建,并与依赖于讲话者依赖于依赖于讲话者的依赖于讲话者的言语质量和清晰度相比,对语音质量和清晰度的改善显着提高。除了英语外,我们还对中国普通话唇读(CMLR)数据集进行了中文语音重建,以验证对可转移性的影响。最后,我们通过在预先训练的语音识别系统上培养生成的音频并在英语和中文基准数据集上实现状态性能来训练级联的唇读(视频对文本)系统。
1。A,B,C,D,E,F,G Chen H,Chung V,Tan L,ChenX。“使用单眼事件摄像头密集的体素3D重建。”在:2023 9T
1 CIBM – 瑞士生物医学成像中心 2 瑞士洛桑大学医院和洛桑大学诊断与介入放射学系 3 法国马赛艾克斯-马赛大学、法国国立科学研究院、拉蒂莫内神经科学研究所 4 瑞士洛桑 CHUV 妇女-母子系 5 西班牙巴塞罗那庞培法布拉大学 6 西班牙巴塞罗那大学 BCNatal 胎儿医学研究中心(圣琼德德乌医院和医院) 7 西班牙巴塞罗那 IDIBAPS 和 CIBERER 8 瑞士苏黎世大学苏黎世大学儿童医院 MR 研究中心 9 瑞士苏黎世大学苏黎世神经科学中心 10 瑞士苏黎世大学研究优先项目“发展和学习中的自适应脑回路”(AdaBD)
本作品根据 Creative Commons Attribution 4.0 许可协议授权。有关更多信息,请参阅 https://creativecommons.org/licenses/by/4.0/
这项工作分析了沉积相和在河中部提取的沉积物见证人的有孔虫关联(S.O.)从中新世到全新世进行了该部门的古环境重建。 div>在更新世期间,强大的Ero siva相导致在上新世上和上新世上,先前沉积在海洋平台上的新材料。 div>随后,该区域被潮汐通道/内部泥泞的平原所占据,这是一种冲积的平原,与新的新形态的新重要侵蚀相吻合,这是My-1违法行为期间与新通道和潮汐平原的潮汐洪水,最后在过去2000年的高高和超大型Marsmas的实施中。 div>证人A的上部由20世纪末至21世纪初之间进行的拟人填充。 div>
评估心肌的形状和运动状态对于诊断心血管疾病至关重要。然而,电影磁共振 (CMR) 成像以 2D 切片为主,其大切片间距对切片间形状重建和运动获取提出了挑战。为了解决这个问题,我们提出了一种将运动和形状分离的 4D 重建方法,该方法可以从有限切片获得的给定稀疏点云序列预测间/内形状和运动估计。我们的框架包括一个神经运动模型和一个舒张末期 (ED) 形状模型。隐式 ED 形状模型可以学习连续边界并鼓励运动模型在没有地面真实变形监督的情况下进行预测,并且运动模型通过将任意点从任意阶段变形到 ED 阶段来实现形状模型的规范输入。此外,构建的 ED 空间可以对形状模型进行预训练,从而指导运动模型并解决数据稀缺问题。我们提出了我们所知的第一个 4D 心肌数据集,并在提出的、公开的和跨模态的数据集上验证了我们的方法,显示出卓越的重建性能并实现了各种临床应用。
摘要:网络提供了一个强大的框架来分析空间OMICS实验。但是,我们缺少集成几种方法来轻松重建网络以与专用库进行进一步分析的工具。在附加过程中,选择适当的方法和参数可能具有挑战性。我们提出了python库Tysserand,以从空间解决的OMICS实验中重建空间网络。它是一种通用工具,生物信息学界可以添加新方法来重建网络,选择适当的参数,清洁结果网络和管道数据到其他库。可用性和实现:带有Jupyter笔记本的Tysserand软件和教程,可在https://github.com/verapancaldilab/tysserand上获得。联系人:Alexis.coullomb@inserm.fr或vera.pancaldi@inserm.fr补充信息:补充数据可在Bioinformatics Online上获得。
为了进一步缓解从单视输入中恢复3D形状的歧义,我们遵循Yu等人。[84]以实现单眼,正常和分割提示,以促进训练过程。但是,由于这些图像在3D-Front [19]数据集中不可用,因此我们使用场景的3D扫描,对象的3D CAD模型以及摄像机在数据集中提供的内在和外在的pa-rameters进行调整。pix3d [69]数据集提供实例分割,但缺乏深度和正常图像。由于渲染是不可能的,因此我们将估计的深度和正常地图用作最先进的估计器的伪基真实[17]。请注意,在训练阶段的过程中,深度,正常和分割信息仅用于指导模型的学习过程,而在推理阶段则无需。这种调查表明,我们的模型仍然灵活且适用于各种情况。
• 入选候选人将在根特大学从事 MSCA-DN 项目 36 个月,最长可延长 12 个月以完成博士学位。 • 根据 MSCA 津贴和主办机构的规定,博士候选人将获得有竞争力的薪酬。根特大学已获得以下欧盟补助金以招募博士候选人 (DC):每月生活津贴 3,400 欧元;每月流动津贴 600 欧元;每月家庭津贴 660 欧元(仅在适用时)。请注意,最终的月薪总额将从上述金额中扣除所有由雇主承担的强制性国家劳动税(社会保障等)。此外,还提供资金用于技术和个人技能培训以及参加国际研究活动。 • 预计开始日期:2025 年 4 月至 9 月之间。我们鼓励届时毕业的最后一年硕士生申请。有关 IQ-BRAIN 职位的一般信息文件中提供了更多信息。