校正了由先天性异常病历记录文档所产生的倒乳头,用于审查卫生服务的福利覆盖范围由联邦,州或合同要求以及可能需要特定服务覆盖的适用法律确定。医疗记录文件可能需要评估成员是否符合覆盖范围的临床标准,但不能保证对所需服务的承保范围;请参阅标题为“医疗记录”文档的协议。定义以下定义可能不适用于所有计划。是指取代以下定义的联邦,州或合同定义。细胞皮肤基质(ADM):一种从人或动物皮肤开发的一种手术网格,将细胞去除,并将支撑结构留在原位(FDA,2021年)。肿瘤淋巴瘤:一种罕见的非霍奇金淋巴瘤(NHL),以及T细胞淋巴瘤的亚型之一,约占所有NHL的百分之一,大约16%的T细胞淋巴瘤(淋巴瘤研究基金会)。乳房植入物相关的大型细胞淋巴瘤最常见的是植入植入物周围的质感植入物或质量延迟的液体集合,或者是植入物周围的纤维胶囊中的质量(St. Cyr 2020)。先天性异常:出生时存在的身体发育缺陷,并在出生的前十二个月内被鉴定出来(COC,2018年)。乳房切除术:去除全部或部分乳房的手术。有不同类型的乳房切除术在去除组织和淋巴结的量上有所不同(NCI,2018)。
各种牙科疾病,例如牙周感染、牙髓疾病、牙列及牙齿缺损、错颌畸形、颌面外伤以及口腔鳞状细胞癌等,给患者带来了极大的痛苦。为了解决这些问题,临床上采用了许多有效的治疗方法,例如牙周刮治、根管治疗、牙齿矫正治疗以及牙种植。在大多数这些治疗过程中,必须注意到牙科材料在实现牙齿功能的恢复或重建方面起着至关重要的作用。牙科材料为临床医生治疗各种口腔疾病和矫形美学带来了许多先进的选择,从而显著改善了人类的口腔健康。到目前为止,包括聚合物、无机材料和金属材料在内的不同类型的材料已广泛应用于牙齿修复、牙齿种植、骨折固定、正畸器具和保持器、活动假牙等方面。为了满足临床需求,具有独特性能(例如抗菌、骨诱导、生物活性、粘合和机械性能)的材料得到了深入研究。此外,一些可用于控制药物输送的创新材料也有助于治疗口腔和牙科疾病。此外,生物相容性支架在牙科组织工程领域也受到了更多关注。在当前的研究主题中,134 位作者贡献了用于牙齿功能修复和重建的先进材料的制备和应用,包括 7 篇评论文章和 11 篇研究文章(截至 2021 年 8 月 25 日,总浏览量为 36,348)。这些研究开发了用于抗菌、药物输送、组织再生等的先进聚合物、无机材料和金属材料。细菌感染后生物膜的形成一直是患者和医生的一大难题,因此研究抗菌牙科材料至关重要。去甲精胺 (NSPD) 是一种多胺,是一种潜在的抗生物膜剂,研究了其对白色念珠菌和人牙髓干细胞成熟生物膜的影响 ( He et al. ),表明 NSPD 的抗生物膜作用具有剂量依赖性。本文综述了沸石、金属有机骨架和共价有机骨架等微孔材料具有潜在的抗菌性能,以及它们在治疗龋齿、牙周炎、种植体周围炎、牙髓感染等口腔感染疾病中的应用 ( Wan
I.介绍1969年7月20日,标志着人类历史上的历史成就。第一次,两个人走在一个不是地球的天体上,固定了人类探索史上的基本里程碑。这一成功是从技术和经济的角度来达到巨大的效果,是美国实现的,以应对苏联太空计划的较早成功,这是由创建和成功启动的第一次创建和成功启动的空间,并与1957年的Sputnik一起,并在1957年及其造成的交流[1,2],以及1,2],又是2 [1,2],又有一个人的交流。 Vostok 1,Yuri Gagarin,1961年[3]。这是历史上遇到的第一个正式步骤[4],尤其是月球竞赛[5]。尽管有最初的技术差距,但多年来,美国太空的进步取得了动力,而Apollo任务的设置[6]代表了整个美国太空计划的最高点。能够实现这样一个目标,需要开发几种新技术。当然,有能力计算能够满足整个任务的所有要求的轨迹。这在Apollo指导计算机的可用计算能力方面和用于指导土星V [8]的发射车数字计算机方面有严格的要求。在发动机切割之前的最后几秒钟进行了特殊护理,以避免溶液中的奇异性。在这种情况下,我们可以将数值优化通常放在[13]中,尤其是直接方法[14]。在上升指导中,火箭采用了所谓的迭代路径自适应指导,利用了最佳控制理论[9],并修改了切线线性转向定律的修改版本,在此期间,其参数经常更新。另一个基本阶段由翻译注射(TLI)的动作表示,该动作使航天器能够离开地球范围的侵入范围到达月球。对于阿波罗11(Apollo 11),设想将哥伦布模块放在自由回报路径上[10],并且此选择需要在机动末端满足的准确态度和位置条件。第三个也是最重要的阶段是月球着陆:鉴于上述计算局限性,NASA工程师在承诺,创造力和专有技术方面对其进行了补偿。这种态度的一个绝妙的例子是基于多项式方案的月球着陆指导,尽管其计算复杂性低[11],但它的电子趋势形式也是最佳的[12]。然而,在过去几十年中,在计算能力和开发的重新构建优化算法方面取得的进展极大地扩展了当今可用的大量方法和工具,以分析相同的问题。在解决最佳控制问题的直接方法中,伪谱方法占据了相关位置。在本文中,我们希望通过使用Spartan [19,24,25]来重建Apollo 11任务的三个关键阶段这些方法[15],基于用于转录问题的时间步长的不均匀分布,事实证明对大型最佳控制问题[16]非常有效,包括国际空间站的零促性剂重新定位[17]。进一步的应用涉及大气进入指导[18,19],火星下降和小行星着陆轨迹计算[20],月球着陆可及性分析[21],卫星在椭圆轨道上的态度稳定[22]和飞机轨迹产生问题[23]。
2用于模型重建的三维传感5 2.1 3D传感器概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.1.1被动传感器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 2.1.2主动传感器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 2.2基于脉冲运行时确定的陆地激光扫描系统。。。。。。。。。。。13 2.2.1扫描机制。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 2.2.2脉冲检测方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 2.2.3案例研究中使用的激光扫描仪。。。。。。。。。。。。。。。。。。。。。。。。。16 2.3真实场景模型重建。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 2.3.1从范围数据重建。。。。。。。。。。。。。。。。。。。。。。。。。。。。18
摘要。在测序相似序列的混合物时,重建单倍型很重要。长阅读测序可以将遥远的等位基因连接到分解类似的单倍型,但是处理误差需要专门的技术。我们提出了Devider,这是一种用于单倍序列(例如病毒或基因)的算法。Devider使用在信息性等位基因的字母表上使用序列到图形对准的位置de bruijn图,以提供与各种长阅读测序技术兼容的快速组装启发的方法。在包含七个HIV菌株的合成纳米孔数据集上,Devider恢复了97%的单倍型内容的97%,即下一个最佳方法的86%,同时服用<4分钟和1 GB的存储器,以> 8000×覆盖范围。基准对抗微生物耐药性(AMR)基因的合成混合物的基准测试表明,分离器恢复了83%的单倍型,比下一个最佳方法高23个百分点。在实际PACBIO和NANOPORE数据集上,Devider在几秒钟内概括了先前已知的结果,从而消除了具有> 10个菌株的细菌群落和HIV-1共感染数据集。我们使用Devider来研究富含AMR基因的长读牛肠元素的宿主内多样性,发现TET(Q)Tetracycline抗性基因具有13种不同的单倍型,具有> 18,000倍覆盖量和6个单倍型的cfxa2 beta-beta-beta-lacta-lacta-lacta-lacta抗体基因。我们发现了这些AMR基因单倍型的清晰重组块,展示了Devider揭示异质混合物生态信号的能力。
摘要。数字孪生是工业 4.0 前沿的新兴技术,其最终目标是将物理空间与虚拟空间结合起来。迄今为止,数字孪生概念已应用于许多工程领域,为工程设计、制造、自动化和建筑行业提供了有用的见解。虽然各种技术的结合为数字孪生开辟了新的机遇,但该技术需要一个框架来整合不同的技术,例如建筑和建筑行业使用的建筑信息模型。在本文中,提出了一个信息融合框架,以无缝融合数字孪生框架中来自各种技术的异构组件。本研究旨在利用无人驾驶航空器支持的人工智能和 3D 重建来增强建筑物中的数字孪生。我们提出了一个基于无人机的数字孪生增强框架,该框架具有可重复使用和可定制的组件。还开发了概念证明,并对 3D 重建和 AI 在缺陷检测中的应用进行了广泛的评估。
视觉导航是机器人技术中的基本问题之一。在过去十年中,这一领域取得了许多重要贡献。截至目前,基于特征点的方法最为流行。虽然这些方法在许多应用中都取得了成功,但无纹理环境对于这些方法来说可能存在很大问题,因为在这些场景中可靠的特征点数量通常很少。尽管如此,边缘可能仍然大量可用,但却未被使用。在本论文中,我们提出了互补的基于边缘的方法,用于视觉定位、映射和密集重建,这些方法在理论上最小的场景配置中仍可运行。从稀疏立体边缘匹配开始,我们提出了两种具有不同性能/效率权衡的技术,它们都针对实时操作。除了与流行的密集立体技术进行比较之外,我们还将这些算法与我们对基于线段的立体方法的有效改编进行了比较。谈到立体视觉里程计,我们提出了一种基于线段的重新投影优化方法,该方法能够在无纹理环境中发挥作用,而经过验证的最先进的基于特征点的方法则无法发挥作用。我们认为,我们的方法甚至可以应对理论上最小的情况,即仅由两个非平行线段组成。然后,我们将这种方法扩展为基于完整线段的同时定位和映射解决方案。使用捆绑调整,我们能够
约束性限制 • 总体规划的影响尚未显现,实施必须辅以结构性改革。 • 采购延迟仍然是主要问题。 • 能源、财政、工业和环境政策领域缺乏政策协调和互补性。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 9 月 29 日发布。;https://doi.org/10.1101/2022.09.29.509744 doi:bioRxiv preprint
神经编码是系统神经科学中的核心问题之一,用于了解大脑如何从环境中处理刺激,此外,它也是设计脑与机器界面算法的基石,在该算法中,解码传入的刺激是高度要求的,以便更好地性能进行物理设备的性能。传统研究人员将功能性磁共振成像(fMRI)数据作为解码视觉场景感兴趣的神经信号。但是,我们的视觉感知在称为神经尖峰的事件方面以毫秒的快速时间尺度运行。几乎没有使用尖峰进行解码的研究。在这里,我们通过开发一个基于深层神经网络的新型解码框架(名为Spike-图像解码器(SID))来重建自然视觉场景(包括静态图像和动态视频),从实验记录的视网膜神经节细胞的尖峰中重建了新的解码框架。SID是一个端到端解码器,其一端为神经尖峰,另一端为图像,可以直接训练它,以使视觉场景以高度准确的方式从尖峰重建。与现有的fMRI解码模型相比,我们的SID在视觉刺激的重建方面也表现出色。此外,借助Spike编码器,我们证明SID可以通过使用MNIST,CIFAR10和CIFAR100的图像数据集将其推广到任意视觉场景。此外,有了预先训练的SID,可以解码任何动态视频,以实现通过Spikes对视觉场景进行实时编码和解码。©2020 Elsevier Ltd.保留所有权利。总的来说,我们的结果为人工视觉系统(例如基于事件的视觉摄像机和视觉神经图)提供了有关神经形态计算的新启示。