由于该应用程序针对的是安卓智能手机,因此使用了基于 Java 开发工具包 (JDK) 的 Android Studio 应用程序开发软件。最初,该软件使用 Lab 流层进行数据采集 [21],以提供不同模块之间更高级别的时间同步并与多个 EEG 流应用程序兼容。然而,我们发现这种结构对于我们的目的来说效率低下,因为它需要后台流应用程序并行运行,这会更快耗尽电池并导致手机发热,从而导致性能问题。因此,我们选择了 EEG 制造商提供的智能手机软件开发工具包 (SDK),特别是 Smarting SDK。这将应用程序的使用限制在特定的 EEG 设备(mBraintrain 的 Smarting)上,但提供了强大的执行力。这还允许向应用程序添加具有独特功能的附加模块。
已经研究了很长时间的神经和免疫系统之间建立的复杂相互作用。随着小型和便携式设备记录和刺激神经活动的出现,许多领域的研究人员开始对神经活动如何引起免疫反应以及是否可以操纵这种活动来触发特定的免疫反应。开创性的作品证明了存在胆碱能炎性的反射,能够通过迷走神经介导的脾脏调节来控制系统性的炎症反应。这项工作启发了许多不同的技术和概念进步领域,在这里进行了审查,为主要工作提供了简明的参考,以扩大对迷走神经免疫调节能力的知识。在这些作品中,实施了周围神经活动记录的能力技术,并体现了目前旨在控制神经活动,并在实验和临床背景下进行免疫反应的调节功能。
超扫描是一种新兴技术,可用于研究互动个体之间的大脑相似性。这种方法对于理解联合动作(例如对话)的神经基础具有重要意义;然而,它还要求不同的大脑记录和感官刺激之间精确的时间锁定。然而,这种精确的时间通常很难实现。将听觉刺激与持续的高时间分辨率神经生理信号一起记录是一种有效的方法,可以离线控制刺激程序发送的数字触发器与通过扬声器/耳机传递给参与者的听觉刺激的实际开始之间的时间异步。由于该方法的复杂性普遍增加,这种配置在超扫描设置中尤其具有挑战性。在使用相关伪超扫描技术的其他设计中,组合大脑听觉记录也是一个非常理想的功能,因为可以使用共享音频信号执行可靠的离线同步。这里,我们描述了两种硬件配置,其中实时传递的听觉刺激与正在进行的脑电图 (EEG) 记录联合记录。具体来说,我们描述并提供使用 Brain Products GmbH 的硬件和软件在超扫描和伪超扫描范式中进行联合 EEG-音频记录的定制实现。
图 2) ENG 分类信号处理的示意图;a) 记录的 ENG 数据集分为训练集和测试集;b) 预处理块应用信号分割和去噪;c) 从运行观察窗口提取和选择特征;d) 数据驱动的分类模型训练;e) 使用从训练中校准的模型对从测试集中提取的特征进行验证以进行类别预测;f) 根据分类器结果驱动设备的决策规则。
微型和纳米制造技术使设备微型化,这改变了我们研究大脑功能的方式 [1]。几十年来,人们开发了具有高密度电极阵列的微机电系统 (MEMS),用于监测细胞外大脑活动 [2–7]。这些工具的复杂程度稳步提高 [8],目前最先进的工具可以同时访问一千多个神经元 [9]。如今,大量基于电极的新兴技术在电极数量 [9–14]、长期稳定性 [15–17]、用于信号处理的集成电子器件 [9, 18]、用于光遗传学或成像的集成光子学或透明材料 [19–24] 以及用于药物输送的集成微流体 [25, 26] 等方面提供了改进。虽然人们显然希望每一种新工具都能成功采用,但将神经记录设备从最初的研发阶段过渡到基础科学实验室仍面临重大挑战。一个普遍的挑战是为神经科学家提供强大的激励,让他们使用特定类型的设备而不是替代产品 [27]。这种激励可以基于有利的技术能力(例如,结构尺寸、电极的数量或排列),也可以基于不太可量化但同样重要的考虑因素,例如可用性和便利性 [28]。
了解单个细胞的祖先状态和谱系关系可以揭示发育背后的动态程序。通过设计细胞来主动记录自身基因组 DNA 中的信息可以揭示这些历史,但现有的记录系统信息容量有限或会破坏空间背景。在这里,我们介绍了 baseMEMOIR,它结合了碱基编辑、顺序杂交成像和贝叶斯推理,可以重建高分辨率细胞谱系树和细胞状态动态,同时保留空间组织。BaseMEMOIR 随机且不可逆地将工程二核苷酸编辑为三种备选图像可读状态之一。通过基因组整合可编辑二核苷酸阵列,我们构建了一个具有 792 位可记录、图像可读内存的胚胎干细胞系,比最先进的技术增加了 50 倍。模拟表明,这种内存大小足以准确重建深层谱系树。通过实验,baseMEMOIR 可以精确重建胚胎干细胞群落中 6 代或更多代的谱系树。此外,它还允许从端点图像推断祖先细胞状态及其定量细胞状态转换率。因此,baseMEMOIR 提供了一个可扩展的框架,用于重建空间组织的多细胞系统中的单细胞历史。
PI 层围绕牺牲层(图 1H 中用红色箭头标记)。由于第二层 PI 被涂覆以填充这些孔,因此第一层和第二层 PI 层之间的界面实际上具有比平面界面更大的表面积,因此在第一层 PI 层和第二层 PI 层之间建立了更好的粘附性。孔阵列提供的更高机械稳定性可防止探针到达此界面时刺穿尖端。探针的尖端为 10
在寻找该问题的答案时,人们会发现磁带录音机不一定比其他录音机更小、更轻、更便宜、更容易操作或更准确;但它有一个特点使它与其他设备截然不同。所有录音机都具有存储信息以供日后使用的功能;但磁带中的信息以电信号形式提供,而其他录音机则产生视觉图像,例如指示仪表和波形图的图片。为什么这很重要?这很重要,因为当今飞行测试飞机的最大问题之一是测试数据的处理。通过以电子可检索形式记录数据,可以利用自动数据处理机器,从而大大减少问题。
摘要 对行为非人类灵长类动物进行电生理学研究通常需要将动物与其社会群体分开,并限制其部分运动,以进行良好控制的实验。当研究目标本身并不要求限制动物的运动时,通常仍需要通过系留数据采集来满足实验需求。同时,最近的技术进步允许在有限尺寸的围栏内以高带宽进行无线神经生理学记录。在这里,我们展示了来自不受约束的恒河猴的单单位分辨率无线神经记录,当时它们在我们定制的独立触摸屏系统 [实验行为仪器 (XBI)] 上在其家庭环境中执行自定进度的结构化视觉运动任务。我们能够成功地表征神经对任务参数的调节,例如在运动规划和执行过程中的视觉空间选择性,这与通过基于设置的神经生理学记录获得的现有结果一致。我们得出结论,当出于科学原因不需要限制运动和/或高度控制、隔离的环境时,笼式无线神经记录是一种可行的选择。我们提出了一种方法,让动物能够以自定节奏的方式使用我们的 XBI 设备,既可以进行全自动训练和认知测试,也可以在熟悉的环境中获取神经数据,与同类保持听觉联系,有时还可以保持视觉联系。
A 是的,抱歉,嗯。根据保险质量,保险费率实际上有三种——最高综合保险费率是高级费率,然后是标准费率,然后是经济费率。经济费率仅涵盖二手物品的费用。