吉隆坡(2月13日):其部长Datuk Seri Rafizi Ramli说,今年第二或第三季度将在今年的第二或第三季度推出Natu的天然气路线图。他说,政府打算以道路图为基于天然气对经济增长的520亿令吉的贡献。“我们想传达政府在关键监管问题上的立场,证明如何打扮这些障碍,并概述了建立强大的燃气基础设施的机会,以确保马来西亚的长期供应确保马来西亚的长期供应,”他在Ma-Laysian煤气座(Mygas 2025)的主题讲话中说。拉菲兹(Rafizi)表示,路线图还将在获得融资和燃气基础结构方面。“通过扩大我们的重新认证媒介和管道,我们希望增加技术工作的数量并维持该行业的社会经济影响。”根据拉菲兹(Rafizi)的说法,政府强大的政策支持的明确指导将增强对银行业和金融部门的信心,即天然气部门将成为该国经济的骨干。Rafizi强调,在考虑能源的地缘政治时,推动是重要的,并指出,全球天然气市场比原油更分散。“国家天然气路线图是能源的重要因素,即确保未来的天然气短缺的未来国家经济保持竞争力。“需要加强几个方面,这些方面涉及汽油市场机制和基础设施投资,”他说。他说,政府需要做出和完善这些决定,以便在批准和提出批准后可以立即实施。
背景:人工智能 (AI) 是医疗保健领域临床决策支持 (CDS) 系统的一股变革力量。它的出现受到医疗保健数据量不断增长和多样性的推动,为患者护理、诊断、治疗和健康管理提供了巨大潜力。本研究系统地回顾了 AI 在六个领域增强 CDS 的作用,强调了其对患者结果和医疗效率的影响。方法:进行了四步系统评价,包括全面的文献检索、应用纳入和排除标准、数据提取和综合以及分析。资料来源包括 PubMed、Embase 和 Google Scholar,自 2019 年以来以英文发表论文。选定的研究侧重于 AI 在 CDS 中的应用,最终审查了 32 篇论文。结果:审查确定了六个 AI CDS 领域:数据驱动的洞察和分析、诊断和预测模型、治疗优化和个性化医疗、患者监测和远程医疗集成、工作流程和管理效率以及知识管理和决策支持。每个领域对于改善 CDS 的各个方面都至关重要,从提高诊断准确性到优化资源管理。人工智能在 EHR 分析、预测分析、个性化治疗和远程医疗方面的能力表明了其在推动医疗保健方面的关键作用。讨论:人工智能通过提高诊断精度、预测能力和管理效率显著增强了医疗保健。它促进了个性化医疗、远程监控和基于证据的决策。然而,数据隐私、道德考虑和与现有系统的集成等挑战仍然存在。这需要技术人员、医疗保健专业人员和政策制定者之间的合作。结论:人工智能正在通过在多个领域增强 CDS 来彻底改变医疗保健,有助于提高效率、效果和以患者为中心的护理。然而,它应该补充而不是取代人类的专业知识。未来的方向包括道德人工智能发展、医疗保健人员的持续专业发展以及应对挑战的合作努力。这种方法确保充分利用人工智能的潜力,从而实现技术与人类护理的协同融合。
实现量子计算的主要障碍 [1] 是处理量子误差。从环境中分离出一点量子信息已经够具挑战性的了;然而,为了实现一台有用的量子计算机,必须维持数千个纠缠量子比特的相干性。拓扑量子比特的用途在于它们内置了容错能力,这是由于任意子和边界模式之间的空间分离 [2]。马约拉纳零模式 [3-5] 是 p 波超导纳米线的端模式,是拓扑量子计算中最有前途的方向之一 [4,6-14]。这些马约拉纳端模式可以非局部地存储信息,并且可以编织起来执行受拓扑保护的逻辑门 [15-22]。尽管拓扑量子比特具有一定程度的防错能力,但它们仍然需要纠错才能完全实现为计算量子比特。完美的马约拉纳量子比特将具有无限长,并保持在零温度下。非零温度会导致有限的准粒子密度,从而导致量子比特出现错误。存在诸如环面码 [ 2 ]、表面码 [ 23 – 26 ] 和颜色码 [ 27 – 29 ] 之类的纠错码,它们可以在马约拉纳量子比特上实现 [ 30 – 37 ] 或平面码 [ 38 , 39 ] 等其他方案。然而,这些纠错方案需要大量开销,需要大量冗余量子比特来捕获和纠正错误。正如 Kitaev 指出的那样 [ 2 ],物质的任何拓扑相都可以识别为纠错码。在这一脉络中,我们要问,由马约拉纳纳米线链构建的一维 (1D) 费米子拓扑相 [40, 41] 是否可以与“费米子宇称保护的纠错码”联系起来。只要费米子宇称守恒,这样的链就可以防止量子误差,而且只需要一行物理量子比特,而不是一个表面。在本文中,我们展示了如何使用马约拉纳纳米线链来显著提高量子比特的寿命,因为马约拉纳量子比特中存在不同错误类型的层次结构。由于观察到的密度出乎意料的高
纳米级和特定的光学相互作用在纳米级的相互作用是一个迅速提高科学意义和技术相关性的话题。纳米级光 - 物质相互作用对于在生物光收集系统中的光转化为化学能以及人工光伏设备中的光到电流转换至关重要。这些相互作用定义了金属纳米结构的相当惊人的线性,尤其是非线性光学特性,因此是理解和操纵纳米级在表面等离子体(SP)激发形式的纳米级定位的关键。这种光定位现象正在发现,从癌症治疗和水分分裂或光催化的根本性相关应用到一般而言,到单分子(Bio-)传感。在用超短,飞秒的光脉冲照明金属纳米结构时,很容易达到局部局部强度,这些强度很容易产生高谐波辐射或将这些颗粒中的电子驱动到这些颗粒中,从而产生femtosecond Electon Electon Electron Electrone Electigrightimah intrighighighighightightige intrighightightimah rections intrighightightige sirtighightigh。混合纳米结构,包括金属,半导体和/或分子聚集体,可以在超快开关中找到全新的应用,或设计具有前所未有敏感性的新的光子晶体管。钻石纳米颗粒中氮空位的电子自旋激发是精心敏感的磁性传感器,在将来的信息处理中作为量子位有趣。在聚合膜上沉积金属纳米结构时,SP激发可能会导致局部光聚合,这可用于探测光学接近纤维或研究纳米级的光化学。纳米级光学的所有这些和许多其他新兴应用都呼吁广泛概述这一引人入胜的领域中正在进行的研究。这是本期特刊的目的 - 物质互动,以提供字段的概述。为此,我们在此领域收集了一系列25篇文章。本期特刊始于C Bauer和H Giessen [1]的有关上等离子晶体的线性光学特性的教程,并包括三篇评论论文和21篇原始文章。该教程之后是一篇有关基于等离子的光聚合及其在近距离传感和光化学中的应用的评论文章[2]。giugni等[3]对“绝热纳米焦焦”的基础和应用进行了有趣的综述,即,将sp polartons转化为纳米含量的sp,例如锥形金属taper虫。Peruch等人[4]的第三次审查仍在印刷中,讨论了基于金属纳米棒阵列的超快全光开关的光学特性。
