摘要:心肌缺血 - 再灌注损伤(MIRI)是由多种机制引起的,包括产生活性氧(ROS),细胞渗透压改变和炎症反应。钙过载,氧水平改变和线粒体ROS也参与了这些MIRI过程,从而导致线粒体通透性过渡孔(MPTP)的不可逆转开放。这些机制和过程与NLRP3界面体启动和激活有关,这也可以通过上调caspase-1途径和IL-18释放来诱导细胞死亡。此外,在存在和不存在MIRI的情况下,内皮功能障碍也伴随着氧气水平的改变,一氧化氮的产生降低,ROS产生过多,导致粘附分子的表达和粘附细胞的表达,而白血细胞在其中呈nlrp3的中心作用,从而导致了中心作用,从而导致了中心的作用,从而使其呈现出来,从而呈现出来,并呈现出良好的作用,呈现出良好的作用,呈现出良好的作用,呈现出良好的作用,呈现出繁殖的作用。冠状动脉疾病典型的冠状动脉流动的改变。鉴于ROS和NLRP3之间的复杂相互关系,ROS抑制剂可以减少NLRP3插入式的激活,而NLRP3抑制剂可以减少氧化应激和膨胀。nlrp3抑制剂已被深入研究为基本心血管科学中的抗炎药。在这篇综述中,我们分析了缺血性心脏病中ROS和NLRP3之间的相互关系,以及某些NLRP3抑制剂在这种疾病状况下可能是治疗剂的作用。本综述中考虑的所有化合物都需要大量研究,以确认其在临床情况下作为抗缺血药物的适当用途。
氧化还原生物学和免疫信号传导在人体中起主要作用,包括大脑功能。迅速成长的文献还表明,氧化还原和免疫异常与精神分裂症(SZ),双极性疾病,自闭症和癫痫病有关。在本文中,我们回顾了这一文献,其对SZ的病理生理的影响以及针对氧化还原和免疫信号传导的新型治疗干预措施的发展潜力。氧化还原生物学和大脑中的免疫信号传导很复杂,尚未完全理解。此外,文献中存在差异,尤其是在以患者为导向的研究中。尽管如此,很明显,在敏感的大脑发育期间,遗传因素与环境因素之间的相互作用在SZ中产生异常,这些异常破坏了本地电路和远距离连通性。纠正这些异常的干预措施可能有效地使精神疾病的大脑功能正常化,尤其是在疾病的早期阶段。
摘要:氧化还原电池(RFB)被认为是用于固定存储应用的最有希望的电化学能源存储技术之一,尤其是在长期持续时间的储能服务中。rfbs是电化学转换器,使用旋转介质作为或用活性材料,可以逆转电化学反应。了解技术标准和其他法规的知识为通过统一的说明和通常适用的规则成功和安全商业化的基础奠定了基础。文献中报道了有关RFB的安全性和法规问题的少量论文,主要是有两个原因。首先,因为这项技术被认为是安全的;其次,因为大多数出版物都仅限于化学材料的短期表征研究。本文旨在帮助填补这一差距,为研究人员和学生提供有关RFB的安全性和监管方面的入门知识,主要是从电气和水力的角度来看。读者被转称是针对更深入研究和分析的特定法规。
摘要:最近,混合储能系统 (HESS) 在充电站、电网服务和微电网等多个应用领域的吸引力日益增长。HESS 由两个或多个单个储能系统 (ESS) 集成而成,以结合每个 ESS 的优势并提高整体系统性能,例如效率和使用寿命。最近对 HESS 的研究主要集中在不同 ESS 之间的电源管理和耦合上,而对特定类型的 ESS 没有特别的兴趣。在过去的几十年里,氧化还原液流电池 (RFB) 因其吸引人的特性而备受关注,尤其是在固定存储应用中,混合可以改善某些短期持续时间和峰值功率可用性特性。本文全面概述了基于 RFB 的 HESS 的主要概念。首先简要描述并指定适用于与 RFB 混合的常见电化学存储技术的关键性能指标 (KPI),然后根据面向电池和面向应用的 KPI 对 HESS 进行分类。此外,提出了一种由 RFB 和超级电容器 (SC) 组合而成的 HESS 最佳耦合架构,并通过数值模拟对其进行了评估。最后,对能源管理系统 (EMS) 进行了深入研究。提供了 EMS 的一般结构以及可能的应用场景,以确定常用的控制和优化参数。因此,将面向系统和面向应用的参数的区分应用于文献数据。之后,讨论了最先进的 EMS 优化技术。由于最佳 EMS 的特点是预测系统的未来行为并使用合适的控制技术,因此对以前实施的 EMS 预测算法和控制技术进行了详细分析。该研究总结了RFB电混合的关键方面和挑战,从而为管理系统新需要的优化和控制算法提供了未来前景。
我们非常高兴地在“稳态:金属和蜂窝氧化还原和免疫状态”上介绍了这个特刊。这个问题的目的是探索金属稳态,细胞氧化还原平衡和免疫功能之间的复杂关系。保持适当的金属稳态和细胞氧化还原平衡的重要性不能被夸大。金属在许多生物过程中起着关键作用,包括酶促反应,信号转导和DNA复制。但是,金属浓度的失衡会导致细胞损伤和功能障碍。同样,氧化剂和抗氧化剂的平衡对于细胞健康至关重要。太多的氧化剂会导致氧气应激,而过量的抗氧化剂会破坏信号通路。重要的是,金属稳态和细胞氧化还原平衡都与免疫功能紧密相关。金属离子在免疫细胞信号传导和分化中起重要作用,而细胞氧化还原平衡会影响免疫细胞的激活和增殖。金属家居和细胞氧化还原平衡的破坏会导致免疫功能受损,并增加对感染的敏感性。此收集中的第五篇文章报告了严重疾病发病机理期间干涉稳态的分子机制。第一篇文章“突触活动通过铁代谢来增强神经元生物能力”,Tena Morraja等人。[1]表明,突触活性会触发铁代谢基因的转录上调,从而导致细胞和线粒体铁的摄取增强。铁可用性的这种增加为电子传输链配合物提供了促进,从而促进了线粒体生物能学的长期改善。实际上,当抑制线粒体铁转运蛋白MFRN1时,活性介导的生物能力的增强被阻断。为了更好地理解突触活动对神经元代谢的持久影响,他们探索了刺激神经元中线粒体能量学的变化。结果表明,线粒体膜电位和消耗量增加,MFRN1的表达受到CREB的调节,Creb是突触可塑性的关键调节剂。这表明突触可塑性程序的表达与满足能量需求相关的增加所需的表达。Michaelis等人的第二个手稿是“胎盘锰和铁转移的差异和相互作用”。[2]研究了锰(Mn)和铁(Fe)在Bewo B30滋养细胞层中的转移。这些元素在胎儿发育中起着至关重要的作用,但是宫内过多的MN与不良妊娠结局有关。这项研究揭示了MN和Fe的胎盘转移有着明显的差异,MN转移在很大程度上独立于应用剂量。同时暴露两个元素表明它们具有共同的转移机制。作者认为,MN的转移可能涉及主动和被动传输过程的组合,因为尽管暴露了不同的情况,但在BOWO细胞中DMT1,TFR或FPN仅略有改变。Reinert等人的第三篇文章。铁是能量代谢中的关键元素,但是当Fe 2+ /Fe 3+比率出现问题时,它可能会产生不利影响。[3]探索安全的铁处理。
摘要:代谢性疾病,如糖尿病和非酒精性脂肪肝 (NAFLD),对受影响的人类有多种负面健康后果。能量代谢失调是这些疾病病理生理学的一个关键因素。脂肪组织是能量稳态的基本调节器,利用几种氧化还原反应进行代谢。特别是棕色和米色脂肪组织在非颤抖性产热过程中进行高度氧化反应,将能量以热量的形式耗散。能量代谢的适当调节需要协调的抗氧化机制来平衡氧化反应。事实上,非颤抖性产热激活会导致氧化剂和抗氧化剂浓度发生显著变化,以适应各种氧化环境。目前代谢疾病的治疗方案要么从啮齿动物模型到人类的转化效果不佳(部分原因是创建生理相关的啮齿动物模型的挑战),要么往往有许多副作用,需要新的治疗方法。由于棕色脂肪组织活性增加会导致能量消耗增加,并与代谢健康有益(例如减少肥胖)有关,因此它作为代谢疾病的调节剂引起了人们的极大兴趣。有益健康影响的一个潜在原因可能是,尽管非颤抖性产热具有极大的氧化性,但它也与激活后氧化剂形成减少有关。然而,专门针对其氧化还原机制来改变代谢疾病仍然是一个未被充分探索的领域。因此,本综述将讨论脂肪组织在能量稳态中的作用、成人非颤抖性产热以及可能作为代谢疾病新治疗靶点的氧化还原机制。
电能存储是大规模部署和整合风能、太阳能等可再生但间歇性能源的重要组成部分。[1] 液流电池 (RFB) 是一种很有前途的电网级储能技术,由于其可扩展性高、放电时间长、储能与发电分离以及运行固有安全等特点,为深度脱碳提供了许多高价值机会。[2] 传统的液流电池采用低丰度金属离子氧化还原对,如钒,这与技术挑战有关,包括相对较低的能量密度以及高成本和环境问题,限制了它们广泛的商业成功。 [2–4] 近来,有机和有机金属氧化还原活性材料,如醌、[5] 吩嗪、[6] 氮氧自由基、[7] 紫精、[7,8] 芴酮、[9] 有机铁配合物、[10,11] 及其