1血液学和医学肿瘤学系,Morales Meseguer大学医院,区域血液调节中心,稀有疾病生物医学研究中心,IMIB-PASCUAL-PASCUAL GRID,西班牙默西亚,默西亚大学,西班牙穆尔西亚大学,2个细胞生物学系,生物医学研究中心,生物医学研究中心,生物医学研究中心Murcia,Murcia,西班牙,3个计算机工程系,结构生物信息学和高性能计算研究小组(Bio-HPC),UCAM天主教大学默西亚大学,瓜达卢佩,西班牙瓜达卢佩,4个临床分析和病理学系,分子病理学和药物遗传学小组, IMIB-PASCUAL GARRILLA, Santa Lucía University Hospital, Cartagena, Spain, 5 Department of Pathology, Morales Meseguer University Hospital, Murcia, Spain, 6 Department of Pathology, Reina Sofía University Hospital, Murcia, Spain, 7 Department of Life Sciences And Biotechnology, University of Ferrara, Ferrara, Ferrara, Ferrara, Italy1血液学和医学肿瘤学系,Morales Meseguer大学医院,区域血液调节中心,稀有疾病生物医学研究中心,IMIB-PASCUAL-PASCUAL GRID,西班牙默西亚,默西亚大学,西班牙穆尔西亚大学,2个细胞生物学系,生物医学研究中心,生物医学研究中心,生物医学研究中心Murcia,Murcia,西班牙,3个计算机工程系,结构生物信息学和高性能计算研究小组(Bio-HPC),UCAM天主教大学默西亚大学,瓜达卢佩,西班牙瓜达卢佩,4个临床分析和病理学系,分子病理学和药物遗传学小组, IMIB-PASCUAL GARRILLA, Santa Lucía University Hospital, Cartagena, Spain, 5 Department of Pathology, Morales Meseguer University Hospital, Murcia, Spain, 6 Department of Pathology, Reina Sofía University Hospital, Murcia, Spain, 7 Department of Life Sciences And Biotechnology, University of Ferrara, Ferrara, Ferrara, Ferrara, Italy
摘要:番茄晚疫病(LB)的病原菌是致病疫霉菌,是一种毁灭性的疾病,严重影响植物的生产力。植物中易感基因(S)的存在促进了病原菌的增殖;因此,抑制这些基因可能有助于提供广谱和持久的耐受性/抗性。先前对拟南芥和番茄的研究表明,PMR4 易感基因的敲除突变体对白粉病具有耐受性。此外,马铃薯中 PMR4 的敲低已被证明可以赋予对 LB 的耐受性。为了在本研究中验证番茄中的相同效果,将含有四个单向导 RNA(sgRNA:sgRNA1、sgRNA6、sgRNA7 和 sgRNA8)的 CRISPR-Cas9 载体(靶向尽可能多的 SlPMR4 区域)通过农杆菌介导的转化引入两种广泛种植的意大利番茄品种:“San Marzano”(SM)和“Oxheart”(OX)。选择了 35 株植物(26 株 SM 和 9 株 OX)并进行筛选,以确定 CRISPR/Cas9 诱导的突变。不同的 sgRNA 导致的突变频率范围从 22.1% 到 100%,或者精确插入(sgRNA6)或缺失(sgRNA7、sgRNA1 和 sgRNA8)。值得注意的是,sgRNA7 在七种 SM 基因型中诱导了纯合状态下的 − 7 bp 缺失,而 sgRNA8 导致产生十五种具有双等位基因突变( − 7 bp 和 − 2 bp)的 SM 基因型。选定的编辑品系接种了 P. infestans,其中四种在 PMR4 基因座完全敲除的品系与对照植物相比表现出减轻的病害症状(易感性从 55% 降低到 80%)。使用 Illumina 全基因组测序对四种 SM 品系进行测序以进行更深入的表征,而未显示出候选脱靶区域发生任何突变的证据。我们的结果首次表明,pmr4 番茄突变体对致病疫霉菌的易感性降低,证实了 KO PMR4 在提供针对病原体的广谱保护中的作用。
2024 年 4 月 4 日从鲁汶大学图书馆 (193.190.253.145) 的 journals.physiology.org/journal/ajprenal 下载。
经验在皮质反馈组织(FB)组织中的作用仍然未知。我们测量了从后期(LM)视觉区域到小鼠原代视觉皮层(V1)的层(LM)视觉区域(lm)视觉区域(lm)视觉区域(lm)视觉区域(v1)的视网膜和非术的视觉体验上操纵视觉体验的效果。lm输入平均与正常和深色饲养的小鼠中的V1神经元匹配,但视觉上的博览会可将空间重叠输入的分数减少到V1。fb输入来自L5的输入比L2/3传达更多的环境信息。L5的LM输入的组织取决于其方向的偏好,并被黑暗饲养所破坏。这些观察结果是通过模型概括的,在这种模型中,VI-SUAL经验最大程度地减少了LM输入和V1神经元之间的接受字段重叠。我们的结果提供了一种机制,可以使周围调制对视觉体验的依赖性,并提出如何在皮质回路中学习预期的区域间共激活模式。
增加的干旱威胁着土壤微生物群落及其在农业土壤中控制的多种功能。这些土壤通常被矿物营养物质受精,但尚不清楚这种施肥如何改变土壤多功能性(SMF)的能力,以维持干旱,以及植物土质相互作用如何影响这些效果。在这项研究中,我们使用山草原土壤来测试矿物营养素(氮和磷)添加的互动效应,并在中间有和没有植物(Lolium Perenne)的SMF上进行了干旱,并在中含有植物中(Lolium Perenne)。我们根据与土壤微生物在其生物量中储存碳(C),氮(N)和磷(P)的能力相关的8个微生物特性计算了SMF,并通过有机物解聚,矿化,硝化,硝化物和否定性加工来处理这些元素。为了研究SMF响应的基础机制,我们表征了使用16S和18S rRNA扩增子测序的土壤化学计量和微生物群落组成的提示变化。我们的结果表明,在植物存在时,受精会降低SMF干旱的耐药性,但在未种植的山地草原土壤中观察到了相反的情况。我们的分析表明,这是由于植物的相互作用,受精和干旱造成了与高SMF相关的四种耦合特性:高土壤水分,低蛋白质C限制,高细菌多样性和低细菌革兰氏革兰氏阳性阳性:革兰氏阳性:革兰氏负比例。总的来说,我们的结果表明,减少矿物肥料在山地草原中的植物生产可以提高土壤在干旱期间保持其多功能性的能力。最后,我们的研究清楚地证明了植物在SMF对全球变化的复杂反应中的重要性,并表明结合化学计量和微生物多样性评估是一种强大的方法,可以解散基本机制。
结果:在本研究中,假单胞菌属,20EI1能够降低黄曲霉的生长。此外,我们确定这种生长抑制是铁的。此外,假单胞菌20EI1减少或阻断了黄曲霉毒素的产生,以及环皮二唑酸和曲酸。在细菌的存在下改变了铁相关基因的表达,而参与产生黄曲霉毒素的基因被下调。铁补充部分重新建立了它们的表达。细菌还降低了其他继发代谢产物(SM)基因的表达,包括参与环皮二唑酸,曲酸和imizoquin生物合成的簇的基因,而聚类的基因与曲霉菌素相对应。有趣的是,全局SM调节基因MTFA被20EI1显着上调,这可能有助于观察到的SM发生变化。
我们专注于 5D(领域、设计、数据、数字和差异化交付),这让我们在外包和离岸外包计划方面能够为客户提供最佳价值。我们已帮助财富 100 强企业从软件生命周期流程中获得商业价值。我们数十年的经验帮助我们建立了独特的能力和资产,例如领域主导的解决方案、离岸外包评估框架、加速器和工具包(如应用程序开发构建块 (BRICKS ©)、可重复使用的组件和整个软件开发生命周期 (SDLC) 的自动化工具)。我们是一家具有分布式交付模型能力的全球全方位服务提供商。多年来,我们成功地为财富 500 强客户建立和管理如此大型的交付中心,这些经验有助于我们确保各方持续可持续的商业价值。
先前的研究强调了急性间歇性缺氧(AIH)在运动不完全脊髓损伤和健全的个体后增强运动性能的治疗益处。虽然对啮齿动物和人类的研究表明AIH可能促进运动兴奋性,但兴奋性变化与功能性能之间的关系尚不清楚。此外,AIH对健全的个体兴奋性的影响的差异值得进一步研究。了解重复AIH对自愿激活和脊柱反射兴奋性的同时影响可能会阐明AIH对肌肉力量产生的功能意义。高自愿激活对于需要重复肌肉收缩的活动中维持扭矩产生至关重要。我们假设,重复的AIH会减弱在疲劳收缩期间通常观察到的自愿激活和最大扭矩产生的下降。为了检验这一假设,我们检查了AIH连续四天对重复的最大足底屈曲收缩期间自愿激活和扭矩产生的影响。,我们通过计算自愿扭矩与具有超大性电刺激产生的扭矩的比率来评估自愿激活的变化。与我们的假设一致,我们表明重复的AIH在疲劳收缩过程中显着增加了汽车和峰值扭矩。我们没有观察到静止的脊柱反射兴奋性或拮抗剂肌肉共激活的任何变化。在一起,这些发现表明,重复的AIH通过增强的下降神经驱动来减少性能疲劳。优化自愿激活对于促进神经系统损伤后功能性步行技能的恢复至关重要。
FeNO,呼出气一氧化氮分数; IgE,免疫球蛋白E; IL,白细胞介素; TSLP,胸腺基质淋巴细胞生成素。 1. Kaplan AP 等人。过敏。 2017;72:519-533; 2. Ridhima W 等人。欧洲呼吸评论。 2019;28:153。 3. Schleich F 等人。欧洲呼吸杂志2023;32:220193; 4.Pavord ID 等人。 J Allergy Clin Immunol Pract. 过敏临床免疫实践杂志2023;11:1213-20; 5. Malinowski A 等人。 J Allergy Clin Immunol. 过敏临床免疫学杂志2016;138:1301-08; 6.Gavreau GM 等人 NEJM。 2014;370:2102-10; 7. Corren JC 等人。 NEJM。 2017;377:936; 8.Menzies-Gow A 等人。新英格兰医学杂志。 2021;384:1800-09; 9. Weschler M 等人。柳叶刀呼吸医学杂志2022;10:650-60; 10. Corren JC 等人。新英格兰医学杂志。 2011;365:1088-98; 11.Austin CD 等人临床经验过敏。 2020;50:1342-51; 12.Hanania NA 等人。胸部。 2015;70:748-56; 13.Panettieri RA 等人。柳叶刀呼吸医学杂志2018;6:511-25; 14.Russell RJ 等人。柳叶刀呼吸医学杂志2018;6:499-510;; 15.Busse WW 等人。柳叶刀呼吸医学杂志2021;9:1165-73。
图1。土壤对干旱和受精的多功能反应,有或没有植物。星星表示干旱和正常气候治疗之间的显着差异。np =无植物,p =植物存在,f =受精,nf =无施肥。灰色=未植入的土壤,绿色=种植土壤,浅色=未施用的土壤,深色=受精的土壤。