在回流过程中,放置元件的电路板上会形成焊点,因此回流炉腔内的温度设置对 PCB 的质量至关重要。不适当的温度曲线会导致各种缺陷,如裂纹、桥接、分层等。焊膏制造商通常会提供理想的温度曲线(即目标温度曲线),而 PCB 制造商则会尝试通过微调炉的配方来满足给定的温度曲线。传统方法是调整配方,使用热测量设备收集热数据。它调整温度曲线依赖于反复试验的方法,这需要花费大量时间和精力。本文提出了 (1) 配方初始化方法,用于确定用于收集训练数据的初始配方;(2) 基于阶段(升温、浸泡和回流)的输入数据分割方法,用于数据预处理;(3) 反向传播神经网络 (BPNN) 模型,用于预测所需的区域温度以减少实际处理曲线与目标曲线之间的差距;(4) 混合整数线性规划 (MILP) 算法,用于生成最佳配方以最小化温度设置。本文旨在通过一次实验实现所需空气温度的非接触式预测。MILP 优化模型利用了从预测结果中获得的上限和下限约束。该模型已通过不同的初始配方和不同的目标曲线进行了交叉验证。结果,在开始实验的 10 分钟内,生成的最佳配方将与目标曲线的匹配度提高了 4.2%,达到 99%,同时降低了 23% 的能源成本。关键词:回流热配方优化、机器学习、基于阶段的分割、反向传播神经网络(BPNN)、混合整数线性规划(MILP)。
回流焊接是表面贴装技术 (SMT) 应用互连的主要方法。该工艺的成功实施取决于能否实现低缺陷率。一般而言,缺陷通常可归因于材料、工艺和设计这三个方面的原因。回流焊接故障排除需要识别和消除根本原因。如果纠正这些原因可能超出制造商的能力范围,则进一步优化其他相关因素成为将缺陷率降至最低的次佳选择。第 1 章介绍电子封装和表面贴装技术的一般设计背景和趋势。第 2 章和第 3 章提供焊接和焊料的基础知识。第 4 章介绍回流工艺的基础知识。这四章是分析焊接缺陷所需的基础知识。第 5 章至第 7 章讨论了缺陷类型、
西门子股份公司 德国慕尼黑 摘要 在 SMT 领域,元件越来越小、功能越来越密集的趋势有增无减。制造商和用户必须日益协调他们的活动,以开发可用且经济高效的解决方案。进步永无止境,尤其是在电子领域。电子产品用于各种各样的应用。越来越多的功能被塞进越来越小的模块中。为了应对从 SMD 技术到微电子领域的这些挑战,仅仅将元件做得更小已经不够了。相反,工程师必须分析材料之间的相互作用,并在制造过程中考虑到它们。为了实现良好的可制造性,应该咨询所有各方,从设计师开始,PCB 制造商、印刷机、模板和焊膏制造商,以及拾放设备制造商和回流专家。只有共同努力才能确保良好的质量。简介 01005 元件的尺寸为 0.2 mm x 0.4 mm,对装配序列中的所有工艺都提出了挑战。它们几乎是看不见的,至少对于“肉眼”来说是这样,而且重量极轻(0.04 毫克)。考虑到这些事实,很容易理解整个组装过程,但更重要的是,PCB 的材料和布局必须针对这些组件的使用进行设计。
因此,给定最终宽度和曲率半径 R,就可以预先确定所需光刻胶的高度。该模型假设光刻胶和基板之间的临界接触角没有影响,并为近似回流光刻胶形状提供了一个起点。参考文献 2 将临界角作为次要约束,并发现对于 S1818 光刻胶,其对回流温度(120 到 170°C 之间)的依赖性大约为 y = -0.2431x + 48.344。参考文献 3(配套论文)研究了 3 种描述光刻胶形状的分析模型。模型 A 使用 Sheridan 等人提出的 4 阶多项式模型;这与模型 B(“总和模型”)和模型 C(“乘积”模型)进行了比较,后两者均使用 4 阶多项式来捕捉与球形概念的偏差。使用边界条件计算系数,包括:面积、中心高度、边缘=0 和临界角。
本应用说明旨在为飞思卡尔半导体客户提供在包覆成型塑料 (OMP) 封装中焊接回流安装高功率 RF 晶体管和集成电路的指南。本文档将帮助客户开发适合其设计和制造操作的装配工艺。每个功率放大器 (PA) 设计都有其独特的性能要求。同样,每个制造操作也有其自己的工艺能力。因此,每个设计和组装可能都需要进行一些微调。本应用说明旨在为客户提供所需的信息,以建立最适合其设计并与制造操作兼容的工艺。在设计和制造 PA 系统时,必须考虑电气、热、质量和可靠性因素。使用此处提供的指南,客户应该能够开发可制造的装配流程,该流程可以执行以下操作:
电话:914-945-3070(SETNA 为 603-548-7870)电子邮件:kwlee@us.ibm.com(SETNA 为 eschulte@set-na.com)摘要锡合金被广泛用作电子互连的焊料。锡焊料表面往往有锡氧化物,需要将其去除以提高互连回流工艺(如倒装芯片连接)的产量。传统上,使用强助焊剂去除这些氧化物,但此工艺的缺点是会留下助焊剂残留物,这可能导致底部填充分层或需要高成本的清洁工艺。随着焊料凸块体积和凸块间间距的减小,这些问题在制造过程中变得更加难以处理。我们建议使用大气等离子体来减少凸块表面的这些氧化物,以便使用非常轻的助焊剂,甚至根本不使用助焊剂。此工艺具有等离子表面处理的优点,而没有真空等离子工艺的成本和产量损失。这种工艺可以提高产量和产量,同时降低成本。我们描述了一个实验,其中锡箔用还原化学大气等离子体工艺处理,然后用X射线光电子能谱 (XPS) 和俄歇电子能谱 (AES) 进行分析。AES 深度剖面分析表明,等离子体显著降低了氧化锡的厚度。没有证据表明任何蚀刻底层元素锡。这些结果表明,氧化锡被还原为金属锡,而底层锡金属没有被蚀刻。在另一个使用带有 SnAg 焊料的半导体芯片的类似实验中,XPS 结果表明氧化锡再次被还原为金属锡。在倒装芯片连接中,使用这种大气等离子体处理的芯片的连接工艺实现了高互连产量,即使在质量差且氧化过度的焊球的情况下也是如此。据我们了解,以前没有报道过在环境中用大气等离子体对氧化锡进行纯化学还原。关键词无铅焊料倒装芯片连接、氧化锡还原、大气等离子体和半导体互连
摘要。铜底物的不同组成材料显着影响金属间化合物(IMC)形成和焊接接头耐用性。这项研究是针对无铅焊料和不同铜基板之间的界面反应进行的。选定的底物是铜(CU)和铜 - 晶状体(CU-BE)。所涉及的无铅焊料是直径为700 µm的SN-3.8AG-0.7CU(SAC3807)焊球。所有样品均经过等温老化过程。通过扫描电子显微镜(SEM),光学显微镜(OM)和能量色散X射线分析(EDX)检查了IMC形成的材料表征和分析。回流过程后,结果表明Cu 6 SN 5和Cu 3 SN IMC层在SAC3870/CU和SAC3870/CU-BE界面形成。在SAC3870/ CU上老化处理后,发生了类似杆状的形状Cu 6 Sn 5和针状Cu 3 Sn 4。同时,SAC3870/Cu-Be的IMC层显示出类似杆状的形状,变成了块状的形状形状Cu 6 Sn 5和Cu 3 Sn 4杆形状。此结果表明在SAC3807/CU和SAC3807/CU-BE的老化过程中,在金属间表面上形成了Ag 3 SN纳米大小。与SAC3807/CU相比,SAC3807/CU-BE的Ag 3 Sn纳米尺寸元件很多。此外,SAC3807/CU-BE的IMC厚度比SAC3807/CU显示出较厚的层。此外,由于百分比非常低,因此无法轻易检测到SAC3807/CU-BE的元素。
考虑到两种材料都需要电桥,焊料和基板之间的电子连接技术变得非常重要。然而,使用含铅的传统焊料已不再被允许,因此正在开发无铅焊接的研究。这项研究旨在研究回流温度对 Sn-58Bi 焊接接头金属间化合物 (IMC) 厚度的影响。选择 Sn-58Bi 焊料和铜板之间的界面反应偶。回流温度设置为高于 Sn-58Bi 焊料熔点温度 61°C、71°C、81°C 和 91°C。高于焊料熔点温度的持续时间设置为 30 分钟。扫描电子显微镜 (SEM) 和能量色散 X 射线光谱 (EDS) 用于研究界面形态和分析局部成分。此外,还进行了 X 射线衍射 (XRD) 测量以确保对 IMC 进行相位识别。需要进行统计分析来比较 Sn-58Bi/Cu 反应对之间 IMC 厚度增长的差异。结果显示在基材-焊料界面处形成了 Cu 6 Sn 5 和 Cu 3 Sn 的 IMC 层。IMC 层厚度随温度而增加。
*港口安全是Reflow Maritime“朝零航行”的一部分,这是一项关于海上组件碳足迹的公正案例研究。结果表明,与传统的不锈钢或镀锌涂层钢的安全梯子相比
Continuous Power Dissipation, T A = +70°C TQFN (derate 27.8 mW/°C above +70°C)..............2222.2mW Operating Temperature Range...........................-40°C to +115°C Junction Temperature.......................................................+150°C Storage Temperature Range............................. -40°C to +150°C Soldering Temperature (reflow)........................................+260°C