•我们的氢生产技术没有直接排放,并且达到了超低碳强度,比CCS(ATR+CCS)的最先进的自动热改革低15-20%。•CO 2的捕获固有地内置在过程设计中,捕获超过99.5%,同时避免使用有毒化学物质或能源密集型过程。•结合了商业证明的氢生产过程的优势,以可靠地提供清洁和负担得起的能源。•利用尾巴气体的氧气燃烧来提供改革和热积分的热量,使高效的循环具有5-7%的热效率增益,而基准ATR+CCS。•结合在一起,与目前市场上所有公用事业规模的氢技术相比,8RH 2的平整成本无与伦比。•轻松地与氨循环技术集成,以实现超低碳氨的产生,该氨可以作为商品交易或用于更容易的H 2运输。
•我们的氢生产技术没有直接排放,并且达到了超低碳强度,比CCS(ATR+CCS)的最先进的自动热改革低15-20%。•CO 2的捕获固有地内置在过程设计中,捕获超过99.5%,同时避免使用有毒化学物质或能源密集型过程。•结合了商业证明的氢生产过程的优势,以可靠地提供清洁和负担得起的能源。•利用尾巴气体的氧气燃烧来提供改革和热积分的热量,使高效的循环具有5-7%的热效率增益,而基准ATR+CCS。•结合在一起,与目前市场上所有公用事业规模的氢技术相比,8RH 2的平整成本无与伦比。•轻松地与氨循环技术集成,以实现超低碳氨的产生,该氨可以作为商品交易或用于更容易的H 2运输。
我们一致认为,我们需要一个强劲、清洁的氢能产业。氢能对环境的影响和能源效率取决于其生产方式。目前,大多数氢能是通过天然气重整或气化生产的,也有少量是通过电解和其他方法生产的。电解氢有可能减少最难减排行业的排放,特别是在无法直接电气化的地方。然而,由于电解过程的能量强度,当使用天然气或煤炭作为动力时,电解器产生的氢能的排放量是通过蒸汽甲烷重整 (SMR) 产生的传统氢能的 1.5-5 倍。4 因此,估计表明,如果没有保障措施,45V 实际上会增加美国氢能生产的排放强度。5 纳税人的钱不能盲目地支持各种电解氢,否则我们可能会损害气候进步,并进一步补贴化石燃料行业,而牺牲环境正义和美国消费者。6
•我们的氢生产技术没有直接排放,并且达到了超低碳强度,比CCS(ATR+CCS)的最先进的自动热改革低15-20%。•CO 2的捕获固有地内置在过程设计中,捕获超过99.5%,同时避免使用有毒化学物质或能源密集型过程。•结合了商业证明的氢生产过程的优势,以可靠地提供清洁和负担得起的能源。•利用尾巴气体的氧气燃烧来提供改革和热积分的热量,使高效的循环具有5-7%的热效率增益,而基准ATR+CCS。•结合在一起,与目前市场上所有公用事业规模的氢技术相比,8RH 2的平整成本无与伦比。•轻松地与氨循环技术集成,以实现超低碳氨的产生,该氨可以作为商品交易或用于更容易的H 2运输。
∙B.Lee,S。Kim,J。Heo,S。Lee,H。Lim,CO 2对H 2生产的CO 2对H 2生产的甲烷的计算流体动力学(CFD)研究:反应堆几何学的效果,国际上关于替代燃料和能源的会议,2017年10月替代燃料和能源(POSTER介绍)
支持安全、可靠人员流动的公共交通智能卡/移动票务解决方案 改革铁路运营以适应“新常态”,NEC 的智能物流支持货物连续流动 车辆内部/外部监控解决方案可确保人员和货物的安全运输
