在竞争激烈的全球市场上,具有极端且通常不寻常性能组合的金属材料一直供不应求。当前最先进的金属材料,如镍基高温合金,正在接近其发展的物理极限,因为未来应用所需的工作温度接近或超过了它们的熔点。能源和交通等社会影响重大领域的进步要求探索和开发新型材料解决方案,以在更高温度下改善结构或功能性能。先进难熔合金,特别是难熔金属间复合材料 (RMIC),如 Nb-硅化物原位复合材料、Mo-硅化物基合金、难熔高熵合金 (RHEA)、难熔复合浓缩合金 (RCCA) 和难熔高温合金 (RSA),作为潜在的结构材料,其使用温度远超镍基高温合金,引起了广泛关注 [1-5]。其中一些合金的优异性能使它们成为当前和未来广泛应用的有希望的候选材料。这些先进材料基于 13 种难熔金属,即钨、铼、锇、钽、钼、铌、铱、钌、铪、铑、钒、铬和锆,其熔点介于 1855 ◦ C(锆)和 3422 ◦ C(钨)之间。它们还可能包含其他元素,例如铝、硅和钛,旨在改善设计所需的性能(主要是机械和/或环境性能)。元素周期表中不同族的难熔金属的性能差异很大。难熔金属及其合金的共同特性是熔点高、高温强度高、对液态金属具有良好的耐腐蚀性。难熔金属在极高的温度下也能保持稳定的蠕变变形,部分原因是它们的熔点高。难熔金属可加工成线材、锭材、钢筋、板材或箔材。它们用途广泛,包括热金属加工、熔炉、照明、润滑剂、核反应控制棒、化学反应容器和空间核能系统。它们也是航空航天应用的关键高温材料。此外,难熔金属还可用作合金添加剂——例如,用于钢、高温合金和高熵合金 (HEA)。最后,应该提到的是,大多数难熔金属都具有生物相容性,为开发用于植入应用的生物材料铺平了道路。低温加工性差和高温氧化性差是大多数难熔金属和合金的缺点。通过使用特定的难熔金属和合金添加剂组合可以改善氧化性能。与环境的相互作用会显著影响它们的高温蠕变强度。这些金属和合金在高温下的应用通常需要使用保护气氛或涂层。最近,RMIC、RHEA、RCCA 和 RSA 已成为深入研究的主题,其中许多研究涉及用于航空航天应用的新型超高温材料的设计。本期特刊发表的论文提供了新的信息
在竞争激烈的全球市场上,具有极端且通常不寻常性能组合的金属材料一直供不应求。当前最先进的金属材料,如镍基高温合金,正在接近其发展的物理极限,因为未来应用所需的工作温度接近或超过了它们的熔点。能源和交通等社会影响重大领域的进步要求探索和开发新型材料解决方案,以在更高温度下改善结构或功能性能。先进难熔合金,特别是难熔金属间复合材料 (RMIC),如 Nb-硅化物原位复合材料、Mo-硅化物基合金、难熔高熵合金 (RHEA)、难熔复合浓缩合金 (RCCA) 和难熔高温合金 (RSA),作为潜在的结构材料,其使用温度远超镍基高温合金,引起了广泛关注 [1-5]。其中一些合金的优异性能使它们成为当前和未来广泛应用的有希望的候选材料。这些先进材料基于 13 种难熔金属,即钨、铼、锇、钽、钼、铌、铱、钌、铪、铑、钒、铬和锆,其熔点介于 1855 ◦ C(锆)和 3422 ◦ C(钨)之间。它们还可能包含其他元素,例如铝、硅和钛,旨在改善设计所需的性能(主要是机械和/或环境性能)。元素周期表中不同族的难熔金属的性能差异很大。难熔金属及其合金的共同特性是熔点高、高温强度高、对液态金属具有良好的耐腐蚀性。难熔金属在极高的温度下也能保持稳定的蠕变变形,部分原因是它们的熔点高。难熔金属可加工成线材、锭材、钢筋、板材或箔材。它们用途广泛,包括热金属加工、熔炉、照明、润滑剂、核反应控制棒、化学反应容器和空间核能系统。它们也是航空航天应用的关键高温材料。此外,难熔金属还可用作合金添加剂——例如,用于钢、高温合金和高熵合金 (HEA)。最后,应该提到的是,大多数难熔金属都具有生物相容性,为开发用于植入应用的生物材料铺平了道路。低温加工性差和高温氧化性差是大多数难熔金属和合金的缺点。通过使用特定的难熔金属和合金添加剂组合可以改善氧化性能。与环境的相互作用会显著影响它们的高温蠕变强度。这些金属和合金在高温下的应用通常需要使用保护气氛或涂层。最近,RMIC、RHEA、RCCA 和 RSA 已成为深入研究的主题,其中许多研究涉及用于航空航天应用的新型超高温材料的设计。本期特刊发表的论文提供了新的信息
背景:卵巢癌是妇科肿瘤中常见的恶性肿瘤,卵巢癌的标准治疗是手术和以紫杉醇、铂类为主的化疗,但传统化疗受到耐药及全身副作用的限制,探索难治性卵巢癌的有效治疗方案势在必行。病例介绍:患者,52岁女性,初诊时以下腹部膨胀、游走性疼痛为主要症状,经腹腔镜探查及活检后,免疫组化显示卵巢低分化腺癌(cT3NxM1,IV期,腹膜及腹壁转移),二代序列检测出ERRFI1(T187A,外显子4)突变。结果:患者接受一线化疗(紫杉醇、奈达铂加阿瓦斯汀),随后以吉非替尼维持治疗,获得15个月的无进展生存期(PFS)。在病情进展和二线治疗失败后,患者接受恩度联合阿帕替尼治疗 14 个周期,无长期不良事件,PFS 为 14 个月。结论:我们认为 ERRFI1 基因可能是吉非替尼的潜在靶点。重要的是,恩度联合阿帕替尼值得推荐用于难治性卵巢癌的维持治疗。关键词:卵巢癌,抗血管生成治疗,恩度,阿帕替尼,吉非替尼
doi:https://doi.org/10.2298/SOS2001001F UDK: 546.271;622.785;676.056.73 超耐火过渡金属二硼化物陶瓷的致密化 WG Fahrenholtz 1*)、GE Hilmas 1、Ruixing Li 2 1 密苏里科技大学,密苏里州罗拉 2 北京航空航天大学,北京,中国 摘要:回顾了过渡金属二硼化物的致密化行为,重点介绍了 ZrB 2 和 HfB 2 。这些化合物被认为是超高温陶瓷,因为它们的熔点高于 3000°C。过渡金属二硼化物的共价键很强,导致熔点极高,自扩散系数低,因此很难对其进行致密化。此外,粉末颗粒表面的氧化物杂质会促进颗粒粗化,从而进一步抑制致密化。20 世纪 90 年代之前的研究主要采用热压进行致密化。这些报告揭示了致密化机制,并确定有效致密化需要氧杂质含量低于 0.5 wt%。后续研究采用了先进的烧结方法,如放电等离子烧结和反应热压,以生产出接近全密度和更高金属纯度的材料。还需要进一步研究以确定基本的致密化机制并进一步改善过渡金属二硼化物的高温性能。关键词:过渡金属二硼化物;致密化;烧结;热压。1. 简介过渡金属二硼化物 (TMB2) 作为用于极端环境的材料已被研究多年。 1-7 多种 TMB2 被视为超高温陶瓷 (UHTC),因为它们的熔点超过 3000°C,其中包括 TiB 2 、ZrB 2 、HfB 2 和 TaB 2。其他 TMB2,例如 OsB 2 和 ReB 2,作为新型超硬材料备受关注。8-10 TMB2 拥有不同寻常的性能组合,例如金属般的热导率和电导率以及陶瓷般的硬度和弹性模量,这是由共价键、金属键和离子键特性的复杂组合产生的。11-13 由于其性能,TMB2 被提议用于极端温度、热通量、辐射水平、应变速率或化学反应性,这些都超出了现有材料的能力。通常提到的 TMB2 的一些潜在应用包括高超音速航空航天飞行器、火箭发动机、超燃冲压发动机、轻型装甲、高速切削工具、熔融金属接触应用的耐火材料、核聚变反应堆的等离子体材料以及先进核裂变反应堆的燃料形式。5,14-22 TMB2 具有极高的熔化温度和硬度值,而同样的特性也使 TMB2 难以致密化。陶瓷材料的致密化可以通过多种方法实现。许多商用陶瓷都是通过无压烧结粉末加工方法制造的部件生产的。23-25有些陶瓷很难通过无压烧结致密化。
卵巢癌是妇科恶性肿瘤中死亡的主要原因,迫切需要新的疗法。在这里,我们报告了有关6B11-OCIK的潜在安全性和效率的初步发现,这是一种由人源化抗IDiotypic抗体6B11型抗体诱导的自体T细胞的收养细胞疗法,以及针对铂 - 抗性复发性或抗逆转癌症患者的树突状细胞和细胞因子和细胞因子和细胞因子,三分之二。我们发现6B11-OCIK治疗是安全且耐受性良好的静脉输注,初始剂量为1 - 2×10 9细胞和剂量攀爬策略。血红蛋白,血小板,白细胞计数,肌酐或肝酶值,凝结功能,肾脏和心脏功能在治疗期间没有显着影响。三名入学的患者中有两个显示出潜在的与药物相关的1级和2级弱点,并且未观察到其他不良事件。在三名入学的患者中,一名患有稳定的疾病,两名显示疾病进展。通过6B11-OCIK增殖能力,CD3+ CD8+肿瘤特异性细胞毒性T淋巴细胞和CD3+ CD3+ CD56+细胞因子诱导的杀伤细胞的激活能力和肿胀的细胞杀伤性,具有有利的临床效率患者的免疫反应更好。这项初步研究表明自体6B11-OCIK治疗是安全的,并且具有治疗后循环肿瘤细胞的变化与稳定疾病患者的血清CA125一致(均降低),而在两名患有疾病进展的患者中观察到差异(两者的CA125升高,CTC的CTC降低,并且在更好的免疫反应患者中的CTC降低),这表明循环肿瘤细胞的变化与免疫反应的差异更加一致。
许多高温推进应用都需要高温难熔金属。难熔金属价格昂贵,难以制造,购买率高,供应商少。增材制造 (AM) 用于生产 C103、钼 (Mo) 和钨 (W) 反应室和推力隔离器以及铱超细晶格催化剂,以集成到 1 N 绿色推进推进器中。难熔金属 AM 正在开发中,与传统 AM 合金一样,在投入使用前需要进行大量后处理,包括粉末热处理、表面光洁度增强、检查和加工。有限的原料来源、高温加工、氧敏感性、易断裂性质以及高温机械测试的需求限制了能够对 AM 难熔材料进行后处理的合格设施的数量,这增加了成本和进度限制。但是,正确实施的难熔金属 AM 可以通过大大提高设计灵活性、新材料选择、降低价格、缩短交货时间并利用不断增长的 AM 商业供应基础来克服现有的制造限制。
尽管癌症的基因组分析显着增加,但基因组发现与临床护理的整合却落后了。我们报告了153例患有复发/难治性或高风险白血病的儿科患者快速鉴定可靶向突变的可行性。十八%的患者信心高1或2,建议。我们描述了14%的复发/难治性白血病患者接受了匹配的靶向疗法。此外,为了告知患者的未来靶向治疗,我们验证了具有不确定意义的变体(VUS),在患者白血病样本中进行了过时的药物敏感性测试,并确定了细胞系中靶向疗法的新组合和患者衍生的红血病毒模型。这些数据和我们的协作方法应为未来的精密医学试验的设计提供信息。
作者手稿已通过同行评审并接受出版,但尚未编辑。作者手稿于 2021 年 4 月 9 日首次在线发表;DOI:10.1158/2159-8290.CD-20-1508
背景:本研究的目的是研究含有受体(KDR)遗传变异的激酶插入结构域对接受apatinib的化学疗法转移性转移性结直肠癌(CRC)患者治疗和安全性的影响。方法:总共有108例接受apatinib治疗的化学疗法转移性CRC患者回顾性地参与了这项研究。评估了患者治疗的功效。进行了预后,分别记录了安全性。分别获得了患者的血液标本和外周血单核细胞(PBMC),分别用于分析遗传变异和KDR基因mRNA Expres sion。提出了基因型状态与临床结果之间的关联。结果:108例接受Apatinib治疗的转移性CRC患者的客观缓解率(ORR)和疾病控制率(DCR)分别为5.6%和69.4%。生存分析结果表明,108例转移性CRC患者的无进展生存期(PFS)和总生存期(OS)为3.6个月(95%置信区间(CI):3.03–4.17个月)和8.9个月(分别为95%CI:7.57-10.23个月)。随后,对KDR遗传变异的分析表明RS2071559具有临床意义。RS2071559的次要等位基因频率为0.22,基因型状态与Hardy-Weinberg平衡相对应(P = 0.949)。此外,两种基因型患者的中位OS分别为10.5和6.1个月(p = 0.007)。通过TC和CC基因型患者的组合,以主要的遗传方式进行预后和裂解,表明TT基因型和TC/CC基因型患者的中位PFS分别为4.1和3.0个月(P = 0.012)。此外,OS的多元COX回归分析表明,TC/CC基因型是OS的独立因素(危险比(HR)= 0.65,P = 0.021)。有趣的是,mRNA表达分析表明,根据RS2071559基因型状态,KDR在PBMC中的mRNA表达显着差异(P <0.001)。结论:apatinib对化学疗法 - 耐药性转移性CRC的患者表现出了潜在的优质临床结果。KDR多态性RS2071559可以用作接受Apatinib治疗的CRC患者预后评估的潜在生物标志物。关键字:结直肠癌,apatinib,含有受体的激酶插入结构域,遗传变异,生物标志物,临床结果,安全
1丹麦哥本哈根哥本哈根大学医院Rigshospitalet神经外科部; 2瑞士日内瓦大学医院核医学系; 3丹麦癌症协会研究中心,丹麦哥本哈根统计和药物ePidemiology; 4丹麦哥本哈根哥本哈根大学医院核医学和宠物临床生理学系; 5 APHM,法国马赛La Timone医院Neurosurgery系; 6加利福尼亚州欧文分校的UC Irvine Medical Center神经病学系; 7加利福尼亚州欧文市加州大学尔湾分校的神经外科部; 8瑞典哥德堡Sahlgrenska大学医院临床生理学系; 9丹麦哥本哈根哥本哈根医院神经病理学系; 10丹麦哥本哈根哥本哈根大学临床医学系; 11丹麦哥本哈根Statens Serum Institut的流行病学研究系;瑞典斯德哥尔摩Karolinska Institute临床神经科学系121丹麦哥本哈根哥本哈根大学医院Rigshospitalet神经外科部; 2瑞士日内瓦大学医院核医学系; 3丹麦癌症协会研究中心,丹麦哥本哈根统计和药物ePidemiology; 4丹麦哥本哈根哥本哈根大学医院核医学和宠物临床生理学系; 5 APHM,法国马赛La Timone医院Neurosurgery系; 6加利福尼亚州欧文分校的UC Irvine Medical Center神经病学系; 7加利福尼亚州欧文市加州大学尔湾分校的神经外科部; 8瑞典哥德堡Sahlgrenska大学医院临床生理学系; 9丹麦哥本哈根哥本哈根医院神经病理学系; 10丹麦哥本哈根哥本哈根大学临床医学系; 11丹麦哥本哈根Statens Serum Institut的流行病学研究系;瑞典斯德哥尔摩Karolinska Institute临床神经科学系12