i. 前言 本书是作为一般指南编写的。作者和出版商对任何个人或实体因任何误解、误用或误用而导致的损失或损害(包括权利损失、物质或人身伤害,或声称直接或间接由本出版物中包含的信息导致的损失或损害)概不负责。作者和出版商不承担并明确否认获取和包含任何其他信息的义务。明确警告读者考虑并采取本文活动可能指示的所有安全预防措施,并避免所有潜在危险。通过遵循本文中包含的说明,读者愿意承担与此类说明相关的所有风险。 警告 所含信息仅供在 HVAC/R 社区内执业的经过正式培训的合格技术人员使用。应始终参考制造商的安装、操作和服务信息,并将其视为安装、调试和维修设备的第一和最佳参考。作者和出版商对本指南中的印刷错误或信息遗漏不承担任何责任。注意:法律要求,必须获得 EPA 批准的第 608 条认证,才能对含有 CFC 和 HCFC(1 类和 2 类制冷剂)的建筑空调和制冷系统进行维修。这包括将模拟制冷剂压力表或数字制冷系统分析仪连接到任何固定式空调或制冷系统/设备。如需更多信息,请联系:Testo, Inc. 35 Ironia Rd. Flanders, NJ 07836 +1 800-227-0729 +1 973 252 1720 传真 +1 973 252 1729 www.testo.com info@testo.com 作者:James L. Bergmann HVAC/R 技术专家 Testo, Inc.
选定的测试运行 • 稳定状态温度 22.8 K • 供给压力 = 631 psig • 低压侧压力 = 10.8 psig • 质量流速 = 4.56 slpm • JT 出口处的估计质量 = 0.808 • 估计制冷功率 = 0.57 W(等温) • 氢液化率 = 0.08 g/min
AC – 空调 ACP − 认可的证书提供商 AHU – 空气处理机组 AIRAH – 澳大利亚制冷、空调和供暖协会 BMS – 楼宇管理系统 CAV – 恒定风量 CHW – 冷冻水 CO – 一氧化碳 CO 2 – 二氧化碳 CW – 冷凝水 DCV − 需求控制通风 DDC – 直接数字控制 DSPR − 管道静压复位 DX – 直接膨胀 EC − 电子换向 EDH – 电热管道加热器 EEV – 电子膨胀阀 ESC – 能源节约证书 ESS – 能源节约计划 FCU – 风机盘管 FTS − 固定时间表 GHG – 温室气体 HHW – 加热热水 HLI − 高级接口 HVAC – 供暖、通风和空调 HVAC&R – 供暖、通风、空调和制冷 HW – 热水 IAQ – 室内空气质量 IPART − 独立定价与监管审裁处
一、引言自人类历史以来,文明的重大进步都是以能源消耗率的增加来衡量的。如今,能源消耗似乎与人民的生活水平和国家的工业化程度有关。然而,由于人类在所有活动中对化石燃料的使用发生了巨大变化,当今世界面临着人类历史上前所未有的环境污染不利状况,全球气温到 2110 年还将进一步上升 1.5-4.5 K。为了避免这些不利条件,我们需要减少燃烧化石燃料作为能源所产生的有害排放。这可以通过提高基于化石燃料的系统的能量转换效率或使用可再生的绿色能源来实现。在这些能源中,太阳能是最重要、最有效和最具吸引力的能源;因为太阳能普遍丰富,取之不尽,不同于许多其他可再生能源。太阳能的吸引人的特点是即使白天和晚上是间歇性的,它也是源源不断的。此外,太阳能不会像化石燃料那样造成空气污染或影响地球大气层。与化石燃料的提取不同,太阳能易于收集。在太阳能热系统领域,太阳能制冷潜力巨大,因为制冷需求达到峰值与太阳能可用性达到峰值相吻合。 1.1.1 太阳能制冷系统分类 太阳能制冷系统可分为三大类:太阳能电、热和联合发电/制冷循环,如图 1 所示。 1.1.2 太阳能制冷系统及应用温度范围 太阳能制冷系统可分为三个主要部分:太阳能收集元件、制冷循环和不同温度范围的应用。每个应用的完美循环主要可根据制冷需求和所需的温度范围来选择。图 2 显示了可以在不同温度范围产生制冷效果的不同太阳能制冷系统。某些应用需要不同的制冷范围,而单一制冷循环无法实现。多效系统是利用太阳能获得不同程度的制冷效果和温度范围的最佳方式,有助于减少影响环境的问题。
b imem-CNR研究所,帕科地区Delle Scienze 37/A 43124 Parma,Italia。*francesco.cugini@unipr.it摘要磁化材料的绝热温度变化的直接测量对于设计有效且环保的磁性冷却设备至关重要。这项工作报告了测量原理和主要实验问题的概述,这些问题必须考虑获得可靠的材料表征。根据有限差异热模拟和特殊设计的实验,讨论了非理想绝热条件,温度传感器的作用以及材料特定特性的作用。详细考虑了两种情况:薄样品的表征以及对快速场变化的热量响应的测量。最后,在具有一阶过渡的材料的情况下,讨论了不同测量方案的影响。1。引言制冷在我们的现代社会中起着基本作用:它渗透了我们的生活,并有助于人类的进化和健康。但是,它的成本超过了全球能源消耗的18%,并且这一数字不断增加二人组,以扩散发展中国家的制冷技术。1对实际气体压缩系统的这种巨大的能源需求和对环境的高度影响,紧急促进了新的环保解决方案。在新兴技术中,有磁制冷,它有望产生低生态影响,没有危险的液体,高效率和减少的电能消耗。2磁制冷是基于磁性效应(MCE),该效应由绝热温度变化(ΔTAD)或通过施加磁场的变化在磁性材料中诱导的等温熵变化(ΔST)组成。3通过磁场的周期性变化获得制冷剂循环。2四个元素对于建立磁冷却系统至关重要:磁化(MC)材料,磁场的来源,一种将材料相对移动到田间移动的机制以及用于传热的流体。通过应用或去除磁场引起的温度变化是导致传热的驱动力。这取决于材料的特性和施加磁场的强度。当前,最有前途的MC材料显示,在1 T的磁场变化中,可逆的ΔTAD为约3 K,这是可以用永久磁体组装而实现的。4–6尽管在过去的二十年中建造了许多磁性冰箱的原型,但竞争性MC设备的开发仍然需要更多执行的MC材料和新的智能技术解决方案。2,4,7除了对材料的磁性特性的基本研究外,寻找有效的冷却元素还需要测量其MC
• 气体动力学与燃气轮机 • 发电 • 传热与传质 • 生产与运营管理 • 汽车工程 • 设施选址与布局规划 • 非传统能源 • 机械动力学 • 内燃机 • 液压机 • 制造技术 • 运筹学 • 制冷与空调 • 铸造与焊接 • 流体力学
冷冻是最古老和最常用的食品保鲜方法之一。自旧石器时代和新石器时代以来,人们就一直使用冰雪来冷却食物,冷冻就被认为是一种非常有效的长期食品保鲜方法。盐和冰的冷却效果首次由化学家罗伯特·波义尔于 1662 年公开讨论,但这项技术在 16 世纪的西班牙、意大利和印度肯定已经为人所知。在维多利亚时代,使用辐射“夜间冷却”在浅湖中制造冰并在冰屋中保存冰雪是大型乡间别墅的常见做法。冰是特权阶层专用的产品,冰冻甜点非常时尚,是巨大财富的象征。在气候更温和的地方,冰雪的保存显然很困难,只有通过人工冷却,冷冻食品才得以更广泛地普及。1755 年,威廉·卡伦首次在没有任何自然冷却形式的情况下通过在低压下蒸发水来制造冰。 1834 年,雅各布·珀金斯 (Jacob Perkins) 制造了第一台使用乙醚的制冰机。在接下来的 30 年里,制冷技术迅速发展,由焦耳和开尔文等人引领,并申请了第一批与食品冷冻相关的专利。1865 年,纽约建造了第一座使用盐水进行冷却的冷藏仓库。1868 年,Anchor Line 的 Circassian 和 Strathl 号船上使用了船用冷风机
1 CSD101计算和编程简介3:0:1 4 2 EED101电气工程概论3:1:1 5总数9主要核心总数学分:68个学分S. No. No.Course Code Course L:T:P Credits 1 MED101 Manufacturing Processes 1:0:1 2 2 MED104 Descriptive Engineering Drawing 2:0:1 3 3 MED105 Engineering Mechanics: Statics and Dynamics 3:1:0 4 4 MED201 Materials Science and Engineering 3:0:1 4 5 MED203 Mechanics of Solids 3:0:1 4 6 MED204 Kinematics and Dynamics of Machines 3:0:1 4 7 MED205 Engineering Thermodynamics 2:1:0 3 8 MED208 Manufacturing Sciences 3:0:1 4 9 MED209 Mechanical Engineering Design & Graphics 2:0:1 3 10 MED210 Principles of Industrial Engineering 3:0:0 3 11 MED211 Mechanics of Fluids 3:0:1 4 12 MED301 Applied Thermodynamics 2:1:0 3 13 MED303 Heat and Mass Transfer 3:0:1 4 14 MED305 Refrigeration & Air Conditioning 2:0:1 3 15 MED306 Fluid Machinery 2:0:1 3 16 MED309 Operations Research 2:1:0 3 17 MED314 Computer Aided Design & Manufacturing 2:0:1 3 18 MED315 I. C. Engines & Automobiles 3:0:1 4 19 MED320 Machine Design 3:0:0 3 20 MED412 Mechatronics & Control System 3:0:1 4 Total Credits 68
AFUE - annual fuel utilization efficiency AHJ – authority having jurisdiction AHRI – American Heating and Refrigeration Institute AHVAC – air-side HVAC ANSI – American National Standards Institute ASHP – air-source heat pump ASHRAE – American Society of Heating, Refrigerating and Air-Conditioning Engineers BBREC – baseline building regulated energy cost BBUEC – baseline building unregulated energy cost BHP – brake horsepower CF – compliance form CFM – cubic feet per minute CHP – combined heat and power CV – constant volume DCV – demand control ventilation Ec - combustion efficiency ECB – Energy Cost Budget Method described in ASHRAE Standard 90.1 Section 11 EFLH – effective full load hours Et - thermal efficiency ERV – energy recovery ventilator DOAS – dedicated outdoor air system HVAC – Heating, Ventilation and Air Conditioning IECC – International Energy Iesna保护法 - 北美工程学会LE - 照明,外部
AFUE - annual fuel utilization efficiency AHJ – authority having jurisdiction AHRI – American Heating and Refrigeration Institute AHVAC – air-side HVAC ANSI – American National Standards Institute ASHP – air-source heat pump ASHRAE – American Society of Heating, Refrigerating and Air-Conditioning Engineers BBREC – baseline building regulated energy cost BBUEC – baseline building unregulated energy cost BHP – brake马力CF - 合规形式CFM - 每分钟CHP - 组合热量和功率CV - 恒定体积DCV - 需求控制通风EC-燃烧效率欧洲央行 - 能源成本预算方法 - ASHRAE标准90.1第11节2016和2016和2019和2019和2019年第12节,以及第12节,以及第12节,以及90.1 2022 EFLH - 有效的效率 - 有效的效率 - 有效的ERV - 有效的ERV - 有效的ERV - 有效的ERV - 有效的ERV系统HVAC - 供暖,通风和空调IECC - 国际节能法规
