沿海地区保护策略通常会留下更深层次的栖息地,例如中间栖息地,未受保护和暴露于人为活动。在这种情况下,考虑了27个意大利海洋保护区(MPA)作为模型,提出了一种在保护计划内部的方法。考虑到它们的测深,暴露于海洋热浪(MHW),质量死亡率事件(MME)以及使用当地的生态知识(LEK)方法,将其估计在MMES之后,MME的估计弹性。只有8个MPA包含相当大的中间区域,其MHW较强,主要发生在Shal-Low-MPA中,并且MME主要影响珊瑚质组合。即使只有10%的响应率,LEK方法也提供了有关某些物种的弹性的有用信息,使我们能够暗示附近的中虫区域的前提可以帮助面对气候变化的较浅的栖息地,从而使“深度雷德雷德”假设具有与热带栖息地有关,通常适用于地中海海洋。
山区的生物经常暴露于极端气候,并且最容易受到气候变化的影响。对沿着海拔梯度的鸟类的长期研究,对于理解物种动态至关重要,在热带山脉中很少见,这限制了面对气候变化时了解其人口趋势的能力。我们在13年(2011 - 2023年)中建模了地下鸟类物种(n = 18)的局部丰度。Kasigau,肯尼亚,使用沿高度梯度收集的雾网数据。 我们的模型在研究期间显示出相对稳定的鸟类丰度。 但是,我们发现两次不同的人口崩溃影响了2015年和2022年大多数物种,这表明局部动态的变化可能导致山区鸟类种群的大量下降。 大多数物种在研究期间具有稳定的局部丰富性,但是参数引导显示一些趋势的下降趋势,包括一个流行的威胁物种。 我们强调了山区在面对全球环境转变(例如气候变化带来的)方面维持相对稳定的人群中的重要性,以及相对较小的空间变化的鸟类种群的活力。 面对温暖的气候,山区生态系统被视为潜在的生物多样性避难所,但需要进一步的研究来了解较高海拔高度的鸟类种群中短期和长期下降的驱动因素,尤其是在热带非洲。Kasigau,肯尼亚,使用沿高度梯度收集的雾网数据。我们的模型在研究期间显示出相对稳定的鸟类丰度。但是,我们发现两次不同的人口崩溃影响了2015年和2022年大多数物种,这表明局部动态的变化可能导致山区鸟类种群的大量下降。大多数物种在研究期间具有稳定的局部丰富性,但是参数引导显示一些趋势的下降趋势,包括一个流行的威胁物种。我们强调了山区在面对全球环境转变(例如气候变化带来的)方面维持相对稳定的人群中的重要性,以及相对较小的空间变化的鸟类种群的活力。面对温暖的气候,山区生态系统被视为潜在的生物多样性避难所,但需要进一步的研究来了解较高海拔高度的鸟类种群中短期和长期下降的驱动因素,尤其是在热带非洲。
热带海洋是展示气候变化信号的第一个地方,影响了海洋鱼类的栖息地分布和丰度。对股票的这些变化以及随后对渔业生产的影响可能对依赖渔业粮食安全和生计的沿海社区产生相当大的影响。因此,了解气候变化对热带海洋渔业的影响是迈向制定可持续的,适合气候的渔业管理措施的重要一步。我们采用一种既定的空间荟萃分析方法来评估菲律宾针对的关键物种捕获渔业的物种分布建模数据集。我们在两个全球排放场景(RCP4.5和RCP8.5)和不同程度的捕鱼压力下分析了数据集,以量化目标社区的潜在气候脆弱性。我们发现,尤其是对上层物种的气候变化的广泛反应,预计在大部分案例研究领域中,丰富的大量会下降,这突出了面对迅速变化的气候,挑战维持粮食安全的挑战。我们认为,面对气候变化的菲律宾的可持续渔业管理只能通过管理策略来实现,从而允许减轻已经锁定在近期气候系统中的压力和适应压力。我们的分析可以支持这一点,从而为渔业经理提供了识别潜在的气候变化热点,亮点和避难所的手段,从而支持了适合气候的管理计划的制定。
寄主抗性,29 减少作物病虫害的栽培措施,34 轮作,35 耕作和免耕,36 诱捕作物,38 绿肥和覆盖作物,38 复种或多种作物(间作),39 避难所,39 整合栽培管理计划,40 决策支持辅助和诊断系统,41 田间和区域,41 精准农业,43 诊断方法的使用,43 生物防治,46 生物农药产品的开发,47 昆虫生物防治,47 杂草生物防治,49 植物病原体的生物防治,包括线虫,50 增强生物防治的其他方法,52 农药,53 为什么农药仍然是一个关键组成部分?,53 农药的作用,55 改变杀菌剂、除草剂和杀虫剂化学成分,55 农药抗药性管理,61 综合害虫管理背景下的抗药性管理,62 抗药性管理策略和工具,63 认证和监管,65 IPM 认证,65 国际背景下的生态标签,67 IPM 监管,68 害虫管理信息决策支持系统,69 跨地区研究项目编号 4 (IR-4),69 入侵害虫的影响,69 入侵植物害虫的传播方式,71 当前入侵植物害虫问题的例子,71 旧植物害虫的重新出现,72 综合害虫管理和农业生物恐怖主义,73 附录 A. 缩写和首字母缩略词,73 附录 B. 词汇表,74 引用的文献,74 相关网站,81
Bagrada Hilaris(Burmeister)(Hemiptera,Pentatomidae),也称为Bagrada Bug,现在是西半球的重要害虫,已经入侵了西部单位状态(Palumbo等人(Palumbo等) 2016),墨西哥(Sánchez-Peña,2014年)和智利(Faúndez等 2016)。 在智利,B。Hilaris迅速传播到最初被发现的大都会地区的北部和南部(Faúndez等人。Bagrada Hilaris(Burmeister)(Hemiptera,Pentatomidae),也称为Bagrada Bug,现在是西半球的重要害虫,已经入侵了西部单位状态(Palumbo等人(Palumbo等)2016),墨西哥(Sánchez-Peña,2014年)和智利(Faúndez等2016)。在智利,B。Hilaris迅速传播到最初被发现的大都会地区的北部和南部(Faúndez等人。2018),并且与黄铜质作物和自然区域有关(Alaniz等人2021)。智利中的当前控制措施由常规杀虫剂的重复应用组成,这些杀虫剂似乎无效(SAG 2017a,b)。当前,在城市或郊区环境中或自然栖息地中没有可行的选择可以控制人口。目前,智利瓦尔帕莱索的一家研究所Centro Ceres正在通过多样化的农业生态系统的营养成分来调查这种害虫的替代解决方案。通过增加功能性生物多样性和采用推拉策略,目的是降低Hilaris的密度和对农作物的损害,并有利于自然敌人的存在。然而,关于一般来说,针对臭虫的土著罐头剂的知识,尤其是Hilaris的知识在智利方面很差。由于需要饲养设施和共同限制,因此,Hilaris的前哨卵的暴露仅是机会性的,但是我们研究B. Hilaris的努力偶然地提供了我们在这里提出的实质性结果。
在六个国家的人类和自然系统中,与工业前水平高1.5至4°C相关的风险,沃伦,r 1。*,价格,J 1。,forstenhäusler,n 1。,Andrews,o 2。,Brown,s 3。,Ebi K 4。,Ebi K 4。,Gernaat d 5。,Goodwin,P 6。,Guan,D 7。肯尼迪·阿瑟(Kennedy-Asser),A 2。 10,Vanvuuren D 5。,Wallace C 10。,Wang,D 11,12。荷兰PBL荷兰环境评估机构6英国南安普敦大学海洋与地球科学学院7地球系统科学系,欣杜阿大学,中国8号国际发展学院,UEA 9,UEA 9,南部科学与技术系,南部科学与科学大学,中国10号气候研究单元,环境研究单元,中国,UEA,UEA,UEA,UEA,UEA,UEA及其经济学,UEA及其经济学,UEA及其经济学。英国伦敦国王学院的地理系 *通讯作者摘要“六个脆弱国家的气候变化风险的应计”收集了一致评估人类和自然系统的风险,因为在六个国家 /地区,中国,巴西,埃及,埃及,埃及,埃塞俄比亚,加纳,加纳和印度的全球升温1.5-4°C,使用气候变化和社会的风险。如果变暖达到3°C,它会比较2100的风险,广泛地对应于当前的全球温室气体减少政策,包括国家的国家确定的贡献,而不是巴黎协议的目标,即将变暖限制在2°C以下和“追求努力”以限制为1.5°C的目标。全球人口在2000年的水平上是恒定的,或者在2100年之前增加到92亿。无论哪种情况,预计在所有六个国家 /地区都会有更大的变暖,以使土地和人们更大的暴露于干旱和河流洪水危害,生物多样性的下降越来越大,玉米和小麦产量的降低也会更大。将全球变暖限制为1.5°C,而与〜3°C相比,预计为所有六个国家带来了巨大的福利,包括由于河流洪水而减少经济损失。预计最大的好处是避免了农业土地暴露到严重干旱的大幅增加,埃塞俄比亚,中国,加纳,加纳和印度在1.5°C下比在3°C下低于61%,43%,18%和21%的人,而在3°C下,在1.5°C的严重干旱中,在1.5°C下的暴露在3°C下的增加是3°3°3°c,占地3°C占3°。在加纳,中国和埃塞俄比亚,植物的气候避难在1.5°C的温暖下,但在加纳,中国,印度,埃塞俄比亚,埃塞俄比亚和巴西分别缩小2、3、3、3、4和10倍的避难所,如果有3°C的升温。与海平面上升相关的经济损害预计将增加沿海国家,但如果变暖仅限于1.5°C,则会更慢。当地的实际利益还取决于国家和地方环境以及未来适应的投资程度。关键词气候变化,风险,人类系统,生态系统服务。
寄主抗性,29 减少作物病虫害的栽培措施,34 轮作,35 耕作和免耕,36 诱捕作物,38 绿肥和覆盖作物,38 复种或多种作物(间作),39 避难所,39 整合栽培管理计划,40 决策支持辅助和诊断系统,41 田间和区域,41 精准农业,43 诊断方法的使用,43 生物防治,46 生物农药产品的开发,47 昆虫生物防治,47 杂草生物防治,49 包括线虫在内的植物病原体的生物防治,50 增强生物防治的其他方法,52 农药,53 为什么农药仍然是一个关键组成部分?,53 农药的作用,55改变杀菌剂、除草剂和杀虫剂的化学成分,55 农药抗药性管理,61 综合害虫管理背景下的抗药性管理,62 抗药性管理策略和工具,63 认证和监管,65 IPM 认证,65 国际背景下的生态标签,67 IPM 监管,68 害虫管理信息决策支持系统,69 跨区域研究项目编号 4 (IR-4),69 入侵害虫的影响,69 入侵植物害虫的传播方式,71 当前入侵植物害虫问题的例子,71 旧植物害虫的重新出现,72 综合害虫管理和农业生物恐怖主义,73 附录 A. 缩写和首字母缩略词,73 附录 B. 词汇表,74 引用的文献,74 相关网站,81
众所周知,即将到来的气候将以各种方式影响森林,包括增长,疾病制度(例如野火,虫害,虫害,人类土地利用)和其他生物学过程,这些过程将影响其健康,分布,丰富和生态系统服务,他们提供的(Aiitken等人2008年; pripper and an an an an an e an e an e e eT; bist and; bist and eet; bist and eet; bist; eet eet; eet eet; Al。,2013)。确定最佳的人干预措施以预期快速变化是一项复杂的事业。在本章中,我们研究了这种复杂性的各个方面,并概述了一个综合框架,以应对森林面临的一些当前和未来的挑战。我们首先要瞥见过去的森林,并评估一些与建模在气候变化下变化有关的一般考虑。在此过程中,我们讨论了以下主题:(1)估计已实现的细分市场,(2)评估数据驱动的统计模型的适用性,用于建模栖息地适用性(HQ),(3)估计物种的迁移能力,以及(4)描述在流化物种下捕获当前和未来动态变化的多阶段方法。我们提供了美国东部和加拿大的例子,并提供了通过物种的区域摘要表来解决物种脆弱性和适应能力的方法。即使我们的重点主要仅限于北美东部,我们还是试图保持叙事广泛,以便可以将经验教训推广到几乎所有温带和北方森林生态系统。我们还讨论了一些挑战,即未来森林生态系统可能会面临的挑战,与模型建设相关的知识差距,辅助移民等管理选择,气候变化避难所的潜在作用,建模挑战以及全球主要森林类型的预计趋势。
摘要目的:在变暖湖泊中管理淡水渔业是具有挑战性的,因为气候变化会影响垂钓者,鱼类及其相互作用。方法:我们将当前和未来湖泊温度的最新模型与休闲渔业的最新模型相结合,从三个美国中北部州(密歇根州,明尼苏达州和威斯康星州)中的587个湖泊中获取数据,以评估休闲渔业的热组成如何随着温度,冰覆盖和湖泊的功能而变化。结果:我们发现,属于温水热量行会(最终温度偏爱[FTP]> 25°C)的娱乐钓鱼捕捞中鱼类比例(WCS),随着年平均湖泊表面温度的增加,随着调查冰的覆盖而降低。但是,我们还发现WCS随湖泊面积和深度增加而降低。使用本世纪中叶(2040–2060)水温和冰的投影,同时保持所有其他变量恒定,我们预测WCS可能会随着气候温暖而增加,但是这种显着的热异质性将持续存在。结论:大型(> 100公顷)和深(> 10 m)的湖泊,以及那些凉爽(<3700年的年增长度周期)预测的未来温度可能会容纳冷水的热避免(FTP = 19-25°C)和Coldwater(FTP <19°C)(FTP <19°C),因为平均湖泊的温度越来越多,可以抗拒造成的湖泊,从而抗拒渔业,以抗拒渔业,以抗拒渔业的变化。较小,更快速变暖的湖泊的经理可能需要考虑接受或指导新兴的温水捕鱼机会的策略。我们建议,不同湖泊景观中气候适应的最可行的途径可能是在可能的情况下抵抗温水转移,并在必要时接受或指导或指导暖水捕捞机会的兴起。