英国能源安全与净零排放部 (DESNZ) 于 2022 年夏季启动的《电力市场安排审查》(REMA) 可能会带来十多年来英国批发电力市场安排最全面的改革。第二次磋商于 2024 年 3 月启动,回复截止日期为 5 月 7 日。目前的批发市场安排促进了近 56 吉瓦可再生能源容量的发展。1 然而,为了在 2050 年实现净零排放,英国已承诺在 2035 年之前实现电力部门完全脱碳。这一愿望给电力系统带来了重大挑战,因为需求和发电变得更加多变和依赖天气。实现这一目标需要开发一个与今天截然不同的电力系统,包括到 2035 年发电能力增加约 2.5 倍,到 2050 年增加 4 倍以上。通过 REMA 制定的未来市场安排需要实现实现这一目标所需的投资规模,同时也要管理不断变化的发电结构对电力系统的影响,这种发电结构将比当前结构更加分散和动态。它们还需要提供正确的灵活性信号,以便系统能够应对间歇性可再生能源发电的变化,并最大限度地提高其对消费者的价值。考虑到这一点,REMA 的核心目标是改革电力市场安排,使其“在保证供应安全的前提下,到 2035 年实现电力系统的全面脱碳,并为消费者带来成本效益”。 Regen 打算代表净零生活计划中的地方当局制定回应,因为 REMA 有可能对地方当局实现地方能源和基于地点的净零目标的能力产生重大影响,我们希望确保地方当局的声音和经验能够反映在这一重要政策领域的发展中。本说明旨在支持地方当局了解现有市场中 REMA 提议的改革的关键问题,包括协商的哪些部分最能引起地方的兴趣。
参考文献1。Smith+Nephew2007。对广泛的微生物的非粘附性敷料的抗菌活性。内部报告。DOF 0703006。2。Smith+Nephew2007。对Allevyn Ag的非粘性敷料样品的细菌屏障测试(湿润),针对Marcescens的测试时间为7天。内部报告。DOF 070304。3。Smith+Nephew2007。对Allevyn Ag的非粘性敷料样品的细菌屏障测试(湿润),对MRSA的测试时间为7天。内部报告。DOF 070305。4。Smith&Nephew2006。对过程变化对Allevyn非粘性伤口敷料的制造的前瞻性用户评估内部报告/CE/022/ANA。5。Smith+Nephew2009。Allevyn Ag非粘附性敷料物理特性。内部报告。DS/09/013/R8。6。Smith+Nephew2008。对Allevyn Ag敷料的多中心市场评估。内部报告。sr/cime/009。7。Smith+Nephew2019。使用水分蒸气PEMEABISIO(MVP)和水分蒸气传输速率(MVTR)数据来支持涉及潮湿伤口愈合的产品索赔。内部语句。eo.awm.pcsgen.001.v2。8。养育AVM,Greenhill MT,Edmonds Me。比较治疗糖尿病足溃疡的两种敷料。伤口护理杂志。1994; 3(5):224-228。 9。1994; 3(5):224-228。9。Smith+Nephew2015。切割Allevyn变体。内部报告DS/14/318/r。10。Kurring PA,Roberts CD,QuinlanD。对社区渗出伤口的管理中的氢化细胞敷料的评估。英国护理杂志1994; 3(20):1049-1050,1052-1043。11。Leonard S,McCluskey P,Long S等。 评估Allevyn粘合剂和非粘合剂泡沫调味料。 伤口英国。 2009; 5(1):17-28。 12。 Smith+Nephew2018。 Project Etidot Testing -Allevyn非粘合剂敷料。 内部报告。 DS/18/264/r。 13。 Franks PJ,Moody M,Moffatt CJ等。 在慢性静脉溃疡管理中,两种泡沫敷料的随机试验。 伤口修复。 2007; 15(2):197-202。Leonard S,McCluskey P,Long S等。评估Allevyn粘合剂和非粘合剂泡沫调味料。伤口英国。 2009; 5(1):17-28。 12。 Smith+Nephew2018。 Project Etidot Testing -Allevyn非粘合剂敷料。 内部报告。 DS/18/264/r。 13。 Franks PJ,Moody M,Moffatt CJ等。 在慢性静脉溃疡管理中,两种泡沫敷料的随机试验。 伤口修复。 2007; 15(2):197-202。伤口英国。2009; 5(1):17-28。 12。 Smith+Nephew2018。 Project Etidot Testing -Allevyn非粘合剂敷料。 内部报告。 DS/18/264/r。 13。 Franks PJ,Moody M,Moffatt CJ等。 在慢性静脉溃疡管理中,两种泡沫敷料的随机试验。 伤口修复。 2007; 15(2):197-202。2009; 5(1):17-28。12。Smith+Nephew2018。Project Etidot Testing -Allevyn非粘合剂敷料。内部报告。DS/18/264/r。13。Franks PJ,Moody M,Moffatt CJ等。在慢性静脉溃疡管理中,两种泡沫敷料的随机试验。伤口修复。2007; 15(2):197-202。2007; 15(2):197-202。
在新的客户需求以及由此产生的新流程和业务模式的世界中,变化是唯一不变的。我们深入研究未来的场景,为您未来的商业成功提供全面的支持。这包括系统的网络和优化,还包括与上游或下游价值创造阶段的协调,以及不仅从技术角度而且从运营角度持续优化位置。使用哪种模型可以在经济参数方面实现最佳结果,而且在客户满意度方面,在什么情况下 - 取决于工作量、工作量、期限要求和质量?为此,我们将与您合作,从大量可用数据中为您提供正确的、永久运行的参数,这将使您能够快速做出反应并不断优化。数据物流——在正确的时间、正确的地点、以期望的质量和正确的成本提供正确的信息——是实现这一点的关键。引用我们与Mayer-Schönberger教授的讨论,它不仅能让我们找到现有问题的答案,还能更进一步,即找到正确的问题。在我们的开发活动中,我们非常关注数字化和为客户提供新工具的主题。我们很乐意与您进行热烈的意见交流,让您对未来有更深入的了解。直接访问我们,或在 LogiMAT、CeMAT 和 Modex 贸易展览会、我们的 MOVE 活动或 Leoben Logistics 2018 年夏季展会上就数字技能主题进行访问。我们期待与您进行精彩的讨论!
在德国,虽然拥有大约 800 个永久土壤观测地块 (BDF) 等全面的基础设施用于此目的,但是却没有对土壤生物进行全面、标准化的记录。然而,目前并非所有联邦州都对其 BDF 开展土壤生物学调查。其中最重要的原因可能是土壤无脊椎动物的鉴定复杂且昂贵。本项目应该有助于解决这一问题。在 25 个地点记录了蚯蚓、蚓螈和跳虫,通过形态学和 DNA 条形码对动物进行了识别,并对结果进行了比较。目的是在德国 BDF 计划框架内制定有效且可定期实施的土壤动物监测建议。结果表明,遗传测定方法基本适合此目的。在其投入正式实践之前,必须满足一些要求。 DNA 参考数据库必须全面、精心管理且质量可控。基于DNA的方法需要标准化。需要开发基于土壤生物数据的可靠土壤健康指标。建议所有联邦州以相同的程度和方法开展土壤动物调查。最初应使用经典的形态学方法定期记录土壤生物,至少记录蚯蚓、蚓螈和跳虫。应研究纳入更多群体。遗传方法的引入应逐步进行,从蚯蚓开始。所收集的数据应集中汇总并向公众开放。从长远来看,环境DNA条形码应该成为研究和评估土壤生物多样性的标准实践。
在这个充满新客户需求以及由此产生的新流程和新商业模式的世界里,唯一不变的就是变化。我们正在深入研究未来场景,以便为您未来的业务成功提供全面支持。这包括系统的联网和优化,也包括与上游和下游价值创造阶段的协调,以及从技术和运营角度对位置的持续优化。根据哪种模型、在哪种情况下(取决于工作量、产能利用率、期限要求和质量)可以在经济参数方面以及客户满意度方面实现最佳结果?为此,我们将与您合作,从大量可用数据中选择正确的、持续运行的参数,使您能够快速做出反应并不断优化。数据物流——在正确的时间、正确的地点以所需的质量和正确的成本提供正确的信息——是实现这一目标的关键。引用我们与 Mayer-Schönberger 教授的讨论,它不仅使我们能够找到现有问题的答案,而且能够更进一步,即找到正确的问题。在我们的开发工作中,我们非常重视为客户提供数字化和新工具。我们很乐意与您进行热烈的意见交流并让您洞悉未来。欢迎直接访问我们,或参加 LogiMAT、CeMAT 和 Modex 贸易展览会、我们的 MOVE 活动或 2018 年夏季莱奥本物流数字技能主题展会。我们期待与您进行激动人心的讨论!
1. 档案数据。2. 技术说明 THM61141。SPI®NEVO、SPI®ELEMENT 和 SPI®CONTACT 种植体 PF 3.5-6.0 的手术程序 3. Cha JY 等人 J Dent Res。2015;94:482-90;4. Aldahlawi S 等人 Clin Cosmet Investig Dent。2018;10:203-9;5. Ikar M 等人 Quintessence Int。2020;51:142-150;6. Duyck J 等人 Clin Oral Implants Res。2015;26:191-6;7. Berglundh T 等人 Clin Oral Implants Res。2003;14:251-62; 8. Mohammadi Z, Dummer PM。Int Endod J。2011;44:697-730。;9. Madigan MM 等人。Brock Biology of Microorganisms。第 16 版:Pearson;2020;10. Tilbury 等人。Hydrometallurgy 2017;170:82-9;11. Tan J 等人。ACS Appl Mater Interfaces。2018;10:42018-29;12. Galow AM 等人。Biochem Biophys Rep。2017;10:17-25;13. Kruse CR 等人。Wound Repair Regen。2017;25:260-69;14. Wang S 等人。Bioact Mater。2021;15:316-29; 15. Burkhardt MA 等人。科学报告2016;6:21071; 16. Burkhardt MA 等人。生物材料科学。 2017;5:2009-23; 17. Hicklin SP 等人,Int J Oral Maxillofac Implants。 2020; 35:1013-20; 18. Le Gac O、Grunder U、Dent.J。 2015;3:15–23; 19. Makowiecki A 等人,BMC 口腔健康。 2019;19:79; 20. Lin G 等人,《临床牙周病杂志》。 2018;45:733–43; 21. Camarda AJ 等人,临床口腔种植研究。 2021;32:285-296; 22. Hermann JS 等人,临床口腔种植研究。 2001;12:559-71; 23. 杰普森 S 等人。 J 临床牙周病杂志。 2015;42:S152-7; 24. Derks J 等人,J Dent Res。 2015;94:44s-51s; 25. Merli M 等人,《临床牙周病杂志》。 2020;47:621–9; 26. Jaquiéry C 等人,Dent。 J.2014; 2:106-17; 27. Hinkle RM 等人,J Oral Maxillofac Surg。 2014年; 72:1495–502; 28. Pedro Molinero-Mourelle 等人,Clin Implant Dent Relat Res. 2024;在线版先行出版;29. Lee JH 等人,Clin Oral Implants Res. 2014;25:e83-9;30. Flanagan D 等人,J Oral Implantol. 2015;41:37-44;31. Sasada Y、Cochran DL,Int J Oral Maxillofac Implants. 2017;32:1296-307;32. Shin HM 等人,J Adv Prosthodont. 2014;6:126-32;33. Yu H、Qiu L,Int. J. Oral Maxillo-fac. Surg. 2022;51:1355-61; 34. Karasan D 等人。临床口腔种植学研究。2023 年;先在线后印刷。
18. Shaito、A.*、H. Hasan、KJ Habashy、W. Fakih、S. Abdelhady、F. Ahmad、K. Zibara、AH Eid、AF El-Yazbi 和 FH Kobeissy。 “西方饮食加剧创伤后脑损伤的神经元损伤:相互作用的可能途径。” EBioMedicine,卷57,2020,页102829,doi:10.1016/j.ebiom.2020.102829。 * 第一作者。如果= 5.736。 19. Maha Tabet、Samar Abdelhady、Nour Al Huda Shaito、Marya El-Kurdi、Hiba Hasan、Reem Abedi、Nawara Osman、Riyad El-Khoury、Abdullah Shaito*、Firas H Kobeissy*。 “脑损伤中的线粒体:抗氧化剂来救援!”正面。 Young Minds,2020 年,DOI:10.3389/frym.2020.510817。 * 通讯作者。 20. Hiba Hasan、Maha Tabet、Samar Abdelhady、Sarah Halabi、Karl John Habashy、Firas H Kobeissy*、Abdullah Shaito*。 “创伤性脑损伤中的神经发生和神经退行性之间的拉锯战。” Frontiers Young Minds,2020 年。 DOI: 10.3389/frym.2020.00119。 * 通讯作者。 21. Fatimah Ahmad, Hiba Hasan, Samar Abdelhady, Walaa Fakih, Nawara Osman, Abdullah Shaito * , Firas Kobeissy. “健康膳食快乐大脑:饮食如何影响大脑功能?” Frontiers Young Minds,2021 年。 9:578214。 doi: 10.3389/frym.2021.578214。 * 通讯作者 22. Ghareghani, M., A. Ghanbari, A. Eid, A. Shaito, W. Mohamed, S. Mondello 和 K. Zibara。 “实验性自身免疫性脑脊髓炎 (Eae) 动物模型中的激素。”翻译神经科学,卷12,没有。 1,2021,页164-189,doi:10.1515/tnsci-2020-0169。 23. Tanios J、Al-Halabi S、Hasan H、Abdelhady S、Saliba J、Shaito A* 和 Kobeissy F。”组织工程在创伤性脑损伤中的应用”,2021年。前沿。年轻的心灵。九:514428。 doi: 10.3389/frym.2020.514428。 * 通讯作者。 24. Haidar MA、Shakkour Z、Reslan MA、Al-Haj N、Chamoun P、Habashy K、Kaafarani H、Shahjouei S、Farran SH、Shaito A 等。 2022.SARS-CoV-2 参与中枢神经系统组织损伤。神经再生研究。 17(6):1228-1239。英语25.Slika H、Mansour H、Wehbe N、Nasser SA、Iratni R、Nasrallah G、Shaito A、Ghaddar T、Kobeissy F、Eid AH。 2022.黄酮类化合物在癌症中的治疗潜力:ROS 介导的机制。生物医学药物治疗。 146:112442。英语26. Tabet M、El-Kurdi M、Haidar MA、Nasrallah L、Reslan MA、Shear D、Pandya JD、El-Yazbi AF、Sabra M、Mondello S 等人。 2022. 米托醌补充剂可减轻慢性时间点重复性轻度创伤性脑损伤后的氧化应激和病理结果。神经学实验。 351:113987。英语27. Zebian A、El-Dor M、Shaito A、Mazurier F、Rezvani HR、Zibara K. 2022. XPC 在 DNA 损伤修复之外的多方面作用:p53 依赖性和 p53 非依赖性
参考文献1。Tomczak,K.,P。Czerwinska和M. Wiznerowicz,《癌症基因组地图集》(TCGA):不可估量的知识来源。当代Oncol(POZN),2015年。19(1a):p。 A68-77。2。Vandereyken,K.,A。Sifrim,B。Thienpont和T. Voet,单细胞和空间多词的方法和应用。nat Rev Genet,2023。24(8):p。 494-515。3。nahm,F.S。,接收器操作特征曲线:临床医生的概述和实际用途。韩国J麻醉剂,2022年。75(1):p。 25-36。4。Bray,F。等,《 2018年全球癌症统计:Globocan在185个国家 /地区在全球36家癌症的发病率和死亡率估计。 ca Cancer J Clin,2018年。 68(6):p。 394-424。 5。 Chen,L。等人,组织病理学图像和多词的整合预测肺腺癌的分子特征和存活。 前牢房Dev Biol,2021。 9:p。 720110。 6。 McQuin,C。等人,Cellprofiler 3.0:生物学的下一代图像处理。 PLOS Biol,2018年。 16(7):p。 E2005970。 7。 Sung,H。等,《全球癌症统计》 2020年:Globocan在185个国家 /地区在全球36种癌症的发病率和死亡率估计。 ca Cancer J Clin,2021。 71(3):p。 209-249。 8。 Kay,C。等人,HR+/HER2+乳腺癌治疗的当前趋势。 Future Oncol,2021。 17(13):p。 1665-1681。 9。 J Thorac Dis,2023。 15(5):p。 2528-2543。 10。Bray,F。等,《 2018年全球癌症统计:Globocan在185个国家 /地区在全球36家癌症的发病率和死亡率估计。ca Cancer J Clin,2018年。68(6):p。 394-424。5。Chen,L。等人,组织病理学图像和多词的整合预测肺腺癌的分子特征和存活。前牢房Dev Biol,2021。9:p。 720110。6。McQuin,C。等人,Cellprofiler 3.0:生物学的下一代图像处理。PLOS Biol,2018年。16(7):p。 E2005970。7。Sung,H。等,《全球癌症统计》 2020年:Globocan在185个国家 /地区在全球36种癌症的发病率和死亡率估计。 ca Cancer J Clin,2021。 71(3):p。 209-249。 8。 Kay,C。等人,HR+/HER2+乳腺癌治疗的当前趋势。 Future Oncol,2021。 17(13):p。 1665-1681。 9。 J Thorac Dis,2023。 15(5):p。 2528-2543。 10。Sung,H。等,《全球癌症统计》 2020年:Globocan在185个国家 /地区在全球36种癌症的发病率和死亡率估计。ca Cancer J Clin,2021。71(3):p。 209-249。8。Kay,C。等人,HR+/HER2+乳腺癌治疗的当前趋势。Future Oncol,2021。17(13):p。 1665-1681。9。J Thorac Dis,2023。15(5):p。 2528-2543。10。Hu,J。等人,基于数字病理学和HR(+)/HER2( - )乳腺癌基于数字病理和深度学习的临床病理特征,多摩学事件和预后的预测。Koch,S.,J。Schmidtke,M。Krawczak和A. Caliebe,多基因风险评分的临床实用性:关键的2023年评估。 J社区基因,2023年。 11。 OTA,M。和K. Fujio,《免疫介导疾病精确医学的多摩学方法》。 炎症,2021年。 41(1):p。 23。 12。 Arehart,C。等人,聚词风险评分预测炎症性肠病的诊断。 Biorxiv,2022。 13。Vander Laak,J。,G。Litjens和F. Ciompi,《组织病理学深度学习:通往诊所的道路》。 nat Med,2021。 27(5):p。 775-784。 14。 ehteshami bejnordi,B。等人,对乳腺癌女性淋巴结转移的深度学习算法的诊断评估。 Jama,2017年。 318(22):p。 2199-2210。 15。 Varga,Z。等人,KI-67免疫组织化学在2级乳腺癌中的可靠性如何? 瑞士乳房和妇科病理学家的质量检查研究。 PLOS ONE,2012年。 7(5):p。 E37379。 16。 Weinstein,R.S。等人,远程病理学,虚拟显微镜和整个幻灯片成像的概述:未来的前景。 Hum Pathol,2009年。 40(8):p。 1057-69。 17。 办公室,N.A。,政府数字化转型:解决效率的障碍。 2023。 18。 2016,马萨诸塞州剑桥:麻省理工学院出版社。Koch,S.,J。Schmidtke,M。Krawczak和A. Caliebe,多基因风险评分的临床实用性:关键的2023年评估。J社区基因,2023年。11。OTA,M。和K. Fujio,《免疫介导疾病精确医学的多摩学方法》。炎症,2021年。41(1):p。 23。12。Arehart,C。等人,聚词风险评分预测炎症性肠病的诊断。Biorxiv,2022。13。Vander Laak,J。,G。Litjens和F. Ciompi,《组织病理学深度学习:通往诊所的道路》。nat Med,2021。27(5):p。 775-784。14。ehteshami bejnordi,B。等人,对乳腺癌女性淋巴结转移的深度学习算法的诊断评估。Jama,2017年。318(22):p。 2199-2210。15。Varga,Z。等人,KI-67免疫组织化学在2级乳腺癌中的可靠性如何?瑞士乳房和妇科病理学家的质量检查研究。PLOS ONE,2012年。7(5):p。 E37379。16。Weinstein,R.S。等人,远程病理学,虚拟显微镜和整个幻灯片成像的概述:未来的前景。Hum Pathol,2009年。40(8):p。 1057-69。17。办公室,N.A。,政府数字化转型:解决效率的障碍。2023。18。2016,马萨诸塞州剑桥:麻省理工学院出版社。Goodfellow I,B.Y.,Courville A,深度学习。
为了精确地测试物理理论,必须在系统中进行检查,该系统足够简单,以允许精确的理论描述,并且可以高精度地测量。数十年来,氢原子一直被用作测试量子电动力学(QED)系统的系统。由于其简单性,可以使用QED精确计算氢的能级。在实验上,使用激光光谱法精确测量氢中的过渡采石场。通过将实验数据与理论表达进行比较,可以确定两个物理概念,即rydberg常数和原子核的辐射半径,并且可以测试理论本身的有效性。在这项工作中,报告了在氢样离子He +中1s-2s两光子转变的光谱法上的进展。由于他 +具有与氢相同的结构,因此基本上是由同一理论描述的。然而,QED较高的高阶贡献了更大的比例,因为它们在核心充电中具有巨大的能力。通过将1S-2S过渡频率与氦芯的众所周知的电荷半径相结合,可以在不同的系统中首次测量Rydberg常数。该值与从氢光谱获得的值的比较将对QED的普遍性进行严格的测试。这项工作的第一部分涉及离子秋天的结构。目前,氢光谱的准确性受核运动的影响限制。由于其负载,他的 +离子几乎被困在保罗陷阱中,这大大降低了这些影响。大约50个He +离子与一千个激光冷却的Be离子一起被困在一起,可用于交感冷却。在He +离子中刺激1S-2S交叉可以导致三光子电离到2+。一种技术,可以实时和一个个体的一部分来检测这些离子。这被用作光谱法的灵敏和背景检测程序。虽然可以在深层紫外线中进行成熟激光系统的氢光谱法,但有必要刺激1S-2S过渡到He +窄带辐射,波长为60,8 nm。这是在极端紫外线(XUV)中,那里没有永久线激光器。取而代之的是,红外频率梳子的高度密集脉冲在夸张谐振器中的夸张谐振器中转换为XUV。产生的XUV频率梳子的离散时尚可以有效地下雨并实现高光谱分辨率。产生高和谐的频率梳需要特殊的光谱纯度,因此可以在XUV中实现狭窄的时尚。在这项工作的第二部分中,描述了满足此要求的稳定频率梳系统的结构。作为这项工作的一部分,已证明了一项新技术来测量谐振器稳定激光系统的噪声噪声。
4BIO Capital 4D Molecular Tx AABB Abeona Tx Accelerated Bio ACF Bioservices Adaptimmune Adicet Bio Adverum Bio AGTC Aivita Biomedical Akouos Akron Bio Albumedix Aldevron Alpha-1 Foundation YTE Angiocrine Bio apceth Biopharma Archbow Consulting Artiva Bio Aruvant Aseptic Technologies ASGCT AskBio Aspect Biosystems Asset Management Company Association of Clinical Research Organizations Be the Match Biotherapies Beam Tx Bellicum Pharma BioBridge Global BioCardia BioLife Solutions BioMarin BioStage Biotech Mountains Blood Centers of America gene (BMS) CEO Council for Growth CGT Catapult Cell Medica Cellatoz CellCAN Cellect Bio CellGenix Cello Health CBMG Cellular Technology Limited CCRM Century Tx Cevec Chemelot CIRM City of Hope Cleveland Clinic Cleveland Cord Blood Center Gene Cook Myosite Cornell University Covance CRISPR Tx Cryoport Systems CSL CTI Clinical Trial and Consulting Services CureDuchenne Cynata Tx Dark Horse Consulting DiscGenics EB Research Partnership Editas Medicine Elevate Bio Emerging Therapy Solutions Encoded Tx Enzyvant Tx ERA Consulting Ex CellThera Exogrades Falcon Tx FARA Fate Tx Fibrocell Science Fight Colorectal Cancer Flexion Tx Foundation Telethon Foundation for Biomedical Research and Innovation GammaDelta Tx G-CON Manufacturing GE Healthcare GE2P2 Global Foundation Gemini BioProducts Generation Bio GENETHON Genprex GenSight Biologics Gift of Life Marrow Registry Gilead/Kite Giner GlaxoSmithKline Global Genes GPB Scientific Gyroscope Tx Halloran Consulting Healios KKHistogen 日立化学 Advanced Tx Solutions Hogan Lovells Homology Medicines Humanscape Huron Consulting Hybrid Concepts International ICON Immusoft InRegen InsightRX Intellia Tx Invetech Invitria Invitrx Iovance IQVIA ISCT ISSCR IVERIC Bio 约翰霍普金斯大学 强生公司 Key Biologics Kiadis Pharma Kimera Labs Kytopen L7 Informatics LabConnect Lake Street Capital Markets Latham BioPharma LatticePoint Consulting Legend Biotech Locate Bio LogicBio Lonza Biologics Lovelace Biomedical Ludwig Boltzmann Institute Lysogene Magenta Tx Mammoth Bio MaSTherCell MaxCyte MEDIPOST America Medpace MeiraGTx MSK Cancer Center Mesoblast Limited MilliporeSigma MiMedx Minerva Bio Miromatrix Medical Missouri Cures MolMed 肌肉骨骼移植基金会 Mustang Bio 国家疾病研究交流中心 美国国家多发性硬化症协会 美国国家干细胞基金会内布拉斯加州救命疗法联盟 NeoProgen 神经干细胞研究所 Neurogene 新泽西创新研究所 纽约干细胞基金会 NexImmune NIIMBL Nkarta 西北大学综合移植中心 Novadip Bio 诺华 / Avexis Novitas Capital Novo Nordisk NYBC Obsidian Odylia Tx OIRM Oisin Bio OncoSenX Opsis Tx Orchard Tx Organabio Orgenesis Orig3n Oxford BioMedica panCELLa Parent Project 肌肉萎缩症 PDC*line Pharma SA 辉瑞 Pluristem Tx PolarityTE Polyplus-transfection Poseida Tx Precigen Precision Bio Prevail Tx 预防癌症基金会项目 8p Project Farma Promethera Bio PTC Tx Recardio Recombinetics Regenerative Patch Technologies ReGenesys Regeneus REGENXBIO REMEDI ReNeuron RepliCel Life Sciences Rescue Hearing Rexgenero Rigenerand Rocket Pharma RoosterBio Roslin CT Rousselot RxGen SanBio Sanford Health Sanford 干细胞临床中心 @ UCSD Sangamo Tx Sanofi Sarepta Sartorius Stedim North America SCM LifeScience 苏格兰国家输血服务中心 Semma Tx Seneca Bio Senti Biosiences Sentien Bio Seraxis Sernova Sigilon Sirion Biotech Skyland Analytics SmartPharm Tx Solid Bio Spark Tx StafaCT Starfish Innovations STEL Technologies StemBioSys StemCyte StemExpress Stempeutics Stop ALD Foundation 干细胞研究学生协会 Sven Kili Consulting Synpromics T-Knife Tacitus Tx Takeda Talaris Tx Tenaya TERMIS-Americas Terumo BCT Tessa Tx 德克萨斯心脏研究所 迈克尔·J·福克斯基金会 Theradaptive Thermo Fisher Scientific ThermoGenesis TikoMed Tmunity Tx TrakCel TreeFrog Tx Tremont Tx LLC Trizell 杜兰大学 UCSD干细胞计划 Ultragenyx 麻省大学医学院 Unicyte uniQure Unite 2 抗击麻痹 退伍军人事务部脊髓联合协会 安第斯大学 科罗拉多大学 宾夕法尼亚大学 Unum Tx VERIGRAFT ViaCyte VidaCel Videregen Vigene VINETI ViveBiotech Vivet Tx Voisin Consulting Voyager Tx WiCell WindMIL Tx World Courier 无锡 Xintela Xyphos Bio Yposkesi Zelluna Ziopharm 肿瘤学福克斯基金会 Theradaptive 赛默飞世尔科技 ThermoGenesis TikoMed Tmunity Tx TrakCel TreeFrog Tx Tremont Tx LLC Trizell 杜兰大学 加州大学圣地亚哥分校干细胞计划 Ultragenyx 麻省大学医学院 Unicyte uniQure Unite 2 抗击麻痹 退伍军人事务部联合脊髓协会 安第斯大学 科罗拉多大学 宾夕法尼亚大学 Unum Tx VERIGRAFT ViaCyte VidaCel Videregen Vigene VINETI ViveBiotech Vivet Tx Voisin Consulting Voyager Tx WiCell WindMIL Tx 世界快递 无锡新泰拉 Xyphos Bio Yposkesi Zelluna Ziopharm 肿瘤学福克斯基金会 Theradaptive 赛默飞世尔科技 ThermoGenesis TikoMed Tmunity Tx TrakCel TreeFrog Tx Tremont Tx LLC Trizell 杜兰大学 加州大学圣地亚哥分校干细胞计划 Ultragenyx 麻省大学医学院 Unicyte uniQure Unite 2 抗击麻痹 退伍军人事务部联合脊髓协会 安第斯大学 科罗拉多大学 宾夕法尼亚大学 Unum Tx VERIGRAFT ViaCyte VidaCel Videregen Vigene VINETI ViveBiotech Vivet Tx Voisin Consulting Voyager Tx WiCell WindMIL Tx 世界快递 无锡新泰拉 Xyphos Bio Yposkesi Zelluna Ziopharm 肿瘤学福克斯基金会 Theradaptive 赛默飞世尔科技 ThermoGenesis TikoMed Tmunity Tx TrakCel TreeFrog Tx Tremont Tx LLC Trizell 杜兰大学 加州大学圣地亚哥分校干细胞计划 Ultragenyx 麻省大学医学院 Unicyte uniQure Unite 2 抗击麻痹 退伍军人事务部联合脊髓协会 安第斯大学 科罗拉多大学 宾夕法尼亚大学 Unum Tx VERIGRAFT ViaCyte VidaCel Videregen Vigene VINETI ViveBiotech Vivet Tx Voisin Consulting Voyager Tx WiCell WindMIL Tx 世界快递 无锡新泰拉 Xyphos Bio Yposkesi Zelluna Ziopharm 肿瘤学福克斯基金会 Theradaptive 赛默飞世尔科技 ThermoGenesis TikoMed Tmunity Tx TrakCel TreeFrog Tx Tremont Tx LLC Trizell 杜兰大学 加州大学圣地亚哥分校干细胞计划 Ultragenyx 麻省大学医学院 Unicyte uniQure Unite 2 抗击麻痹 退伍军人事务部联合脊髓协会 安第斯大学 科罗拉多大学 宾夕法尼亚大学 Unum Tx VERIGRAFT ViaCyte VidaCel Videregen Vigene VINETI ViveBiotech Vivet Tx Voisin Consulting Voyager Tx WiCell WindMIL Tx 世界快递 无锡新泰拉 Xyphos Bio Yposkesi Zelluna Ziopharm 肿瘤学福克斯基金会 Theradaptive 赛默飞世尔科技 ThermoGenesis TikoMed Tmunity Tx TrakCel TreeFrog Tx Tremont Tx LLC Trizell 杜兰大学 加州大学圣地亚哥分校干细胞计划 Ultragenyx 麻省大学医学院 Unicyte uniQure Unite 2 抗击麻痹 退伍军人事务部联合脊髓协会 安第斯大学 科罗拉多大学 宾夕法尼亚大学 Unum Tx VERIGRAFT ViaCyte VidaCel Videregen Vigene VINETI ViveBiotech Vivet Tx Voisin Consulting Voyager Tx WiCell WindMIL Tx 世界快递 无锡新泰拉 Xyphos Bio Yposkesi Zelluna Ziopharm 肿瘤学福克斯基金会 Theradaptive 赛默飞世尔科技 ThermoGenesis TikoMed Tmunity Tx TrakCel TreeFrog Tx Tremont Tx LLC Trizell 杜兰大学 加州大学圣地亚哥分校干细胞计划 Ultragenyx 麻省大学医学院 Unicyte uniQure Unite 2 抗击麻痹 退伍军人事务部联合脊髓协会 安第斯大学 科罗拉多大学 宾夕法尼亚大学 Unum Tx VERIGRAFT ViaCyte VidaCel Videregen Vigene VINETI ViveBiotech Vivet Tx Voisin Consulting Voyager Tx WiCell WindMIL Tx 世界快递 无锡新泰拉 Xyphos Bio Yposkesi Zelluna Ziopharm 肿瘤学福克斯基金会 Theradaptive 赛默飞世尔科技 ThermoGenesis TikoMed Tmunity Tx TrakCel TreeFrog Tx Tremont Tx LLC Trizell 杜兰大学 加州大学圣地亚哥分校干细胞计划 Ultragenyx 麻省大学医学院 Unicyte uniQure Unite 2 抗击麻痹 退伍军人事务部联合脊髓协会 安第斯大学 科罗拉多大学 宾夕法尼亚大学 Unum Tx VERIGRAFT ViaCyte VidaCel Videregen Vigene VINETI ViveBiotech Vivet Tx Voisin Consulting Voyager Tx WiCell WindMIL Tx 世界快递 无锡新泰拉 Xyphos Bio Yposkesi Zelluna Ziopharm 肿瘤学福克斯基金会 Theradaptive 赛默飞世尔科技 ThermoGenesis TikoMed Tmunity Tx TrakCel TreeFrog Tx Tremont Tx LLC Trizell 杜兰大学 加州大学圣地亚哥分校干细胞计划 Ultragenyx 麻省大学医学院 Unicyte uniQure Unite 2 抗击麻痹 退伍军人事务部联合脊髓协会 安第斯大学 科罗拉多大学 宾夕法尼亚大学 Unum Tx VERIGRAFT ViaCyte VidaCel Videregen Vigene VINETI ViveBiotech Vivet Tx Voisin Consulting Voyager Tx WiCell WindMIL Tx 世界快递 无锡新泰拉 Xyphos Bio Yposkesi Zelluna Ziopharm 肿瘤学福克斯基金会 Theradaptive 赛默飞世尔科技 ThermoGenesis TikoMed Tmunity Tx TrakCel TreeFrog Tx Tremont Tx LLC Trizell 杜兰大学 加州大学圣地亚哥分校干细胞计划 Ultragenyx 麻省大学医学院 Unicyte uniQure Unite 2 抗击麻痹 退伍军人事务部联合脊髓协会 安第斯大学 科罗拉多大学 宾夕法尼亚大学 Unum Tx VERIGRAFT ViaCyte VidaCel Videregen Vigene VINETI ViveBiotech Vivet Tx Voisin Consulting Voyager Tx WiCell WindMIL Tx 世界快递 无锡新泰拉 Xyphos Bio Yposkesi Zelluna Ziopharm 肿瘤学福克斯基金会 Theradaptive 赛默飞世尔科技 ThermoGenesis TikoMed Tmunity Tx TrakCel TreeFrog Tx Tremont Tx LLC Trizell 杜兰大学 加州大学圣地亚哥分校干细胞计划 Ultragenyx 麻省大学医学院 Unicyte uniQure Unite 2 抗击麻痹 退伍军人事务部联合脊髓协会 安第斯大学 科罗拉多大学 宾夕法尼亚大学 Unum Tx VERIGRAFT ViaCyte VidaCel Videregen Vigene VINETI ViveBiotech Vivet Tx Voisin Consulting Voyager Tx WiCell WindMIL Tx 世界快递 无锡新泰拉 Xyphos Bio Yposkesi Zelluna Ziopharm 肿瘤学福克斯基金会 Theradaptive 赛默飞世尔科技 ThermoGenesis TikoMed Tmunity Tx TrakCel TreeFrog Tx Tremont Tx LLC Trizell 杜兰大学 加州大学圣地亚哥分校干细胞计划 Ultragenyx 麻省大学医学院 Unicyte uniQure Unite 2 抗击麻痹 退伍军人事务部联合脊髓协会 安第斯大学 科罗拉多大学 宾夕法尼亚大学 Unum Tx VERIGRAFT ViaCyte VidaCel Videregen Vigene VINETI ViveBiotech Vivet Tx Voisin Consulting Voyager Tx WiCell WindMIL Tx 世界快递 无锡新泰拉 Xyphos Bio Yposkesi Zelluna Ziopharm 肿瘤学福克斯基金会 Theradaptive 赛默飞世尔科技 ThermoGenesis TikoMed Tmunity Tx TrakCel TreeFrog Tx Tremont Tx LLC Trizell 杜兰大学 加州大学圣地亚哥分校干细胞计划 Ultragenyx 麻省大学医学院 Unicyte uniQure Unite 2 抗击麻痹 退伍军人事务部联合脊髓协会 安第斯大学 科罗拉多大学 宾夕法尼亚大学 Unum Tx VERIGRAFT ViaCyte VidaCel Videregen Vigene VINETI ViveBiotech Vivet Tx Voisin Consulting Voyager Tx WiCell WindMIL Tx 世界快递 无锡新泰拉 Xyphos Bio Yposkesi Zelluna Ziopharm 肿瘤学