▪ 指导和培训我们的教职员工使用商业生物材料准备支架 ▪ 帮助开发可有效用于 3D 建模的内部支架材料 ▪ 协助和培训我们的教职员工开发加速烧伤、手术和创伤后伤口愈合的方法。 ▪ 培训教职员工使用替代来源加速伤口愈合,如鱼皮等。 ▪ 能够将再生医学技术与其他专门的干细胞研究领域相结合,包括利用诱导多能干细胞 (iPSC) 和 CRISPR-Cas9 基因编辑技术进行 3D 疾病建模和类器官开发,从而了解潜在的病理生理学和药物发现 ▪ 培训教职员工了解转化干细胞生物学领域的再生医学的道德和正确使用 ▪ 在适当的情况下,CADEX 参与者将有机会在 CRM 指导短期实习生和志愿者。 ▪ 确定再生和 iPSC 核心设施中需要注意的缺陷 ▪ 确定 CRM 再生和类器官开发计划中需要注意的缺陷 ▪ 支持与 CRM 的教职员工和高级成员一起设计和推出下一个 5 年再生医学和干细胞研究战略计划。
摘要肺疾病纤维化,例如慢性阻塞性肺部疾病,急性肺损伤和Covid 19后的肺部疾病被认为是过去十年中的主要健康问题。用间充质干细胞(MSC)的细胞疗法提供了一种与抗炎,免疫调节剂,再生,亲血管生成和抗纤维化特性相关的肺纤维化方法。治疗效果可以与MSC - 分泌组有关,MSC分泌组是由游离溶解蛋白和细胞外囊泡(EV)制成的。本综述总结了一些与MSC衍生产品在肺部疾病前临床模型中的功效和安全性有关的发现的最新文献,显示了MSC分泌组中包含的活性物质及其与组织再生有关的机制。透视视图是关于分为高质量,安全有效的药品的秘密观点,关键词:肺纤维化,炎症,间充质干细胞,Secretoms
摘要:羟基磷灰石(HAP)聚合物复合材料由于其在骨骼再生和牙齿植入物中的应用而受到了极大的关注。本综述研究了HAP的综合,性质和应用,突出了各种制造方法,包括湿,干,水热和溶胶 - 凝胶过程。HAP的特性受到前体材料的影响,通常是从富含钙的蛋壳,贝壳和鱼鳞的天然富含钙来源获得的。复合材料,例如纤维素 - 羟基磷灰石和明胶 - 羟基磷灰石,表现出有望的强度和骨骼和组织替代的生物相容性。金属植入物和脚手架增强了稳定性,包括著名的钛和不锈钢植入物和陶瓷身体植入物。类似壳聚糖和藻酸盐等生物聚合物与HAP结合使用,为组织工程提供了化学稳定性和强度。胶原蛋白,纤维蛋白和明胶在模仿天然骨成分中起着至关重要的作用。各种合成方法,例如溶胶 - 凝胶,水热和溶液铸造产生HAP晶体,并具有潜在的骨修复和再生应用。此外,使用生物塑料材料(例如蛋壳和蜗牛或贝壳)不仅支持可持续的HAP生产,而且还可以减少环境影响。本综述强调了了解脚手架产生钙 - 磷酸化合物(CA-P)化合物的特性和加工方法的重要性,突出了骨愈合中生物材料的新特征和机制。这些方法在特定应用中的比较研究强调了生物医学工程中HAP复合材料的多功能性和潜力。总体而言,HAP复合材料提供了有希望的解决方案,可改善骨骼置换和组织工程的患者结局以及进步的医疗实践。
摘要:牙周组织由支撑组织及其功能组成,它促进了粘弹性,本体感受传感器和牙齿锚固。其疾病的进行性破坏导致骨骼和牙周韧带的丧失。因此,不断开发生物材料以恢复组织功能。各种技术被用于促进再生牙科,包括使用生物焦制剂的3D生物打印。本文旨在审查牙周组织再生中使用的不同类型的生物墨水制剂和3D生物打印技术。不同的技术,并将不同的材料添加到生物学上,以改善过程并创建支持细胞生存能力,增殖,分化和量化量化的稳定性的生物互联。
摘要 - 电动汽车的关键要求是有效的制动。这项研究的目的是提供利用各种电源调节器的再生制动系统的详细描述。这项研究利用了降压型增强转换器。使用两种方法来修改从再生制动过程中产生的波动输入得出的电压:一种用于减少其,另一种用于增强其。随后,电压传感器检测到所得的输出电压,然后使用Arduino微控制器调节该电压。检查结果表明,降压转换器的性能良好,将输出电压保持在39-40伏的范围内。即使输入电压中有波动,这也可以很好地发挥作用。电压值可用于为36伏电动机的电池充电。这些发现证明了利用降压转换器调节器的功效。此外,它可以在8秒钟内为电池充电,这使其成为电动汽车的可行选择,以替代电池再生制动。
主要发展允许将无生物材料的细胞聚集体精确结构,以改善分辨率和复杂性的组织与组织相关的模式,而与简单地将球体添加在一起可以达到的分辨率和复杂性相比(6)。例如,仅由体细胞细胞组成的生物互联可以将其加载到生物打印喷嘴中,并挤出以成为仅细胞的链。然后,通过将仅细胞的生物键挤入支撑水凝胶浴中,将模式能力赋予。值得注意的是,将仅干细胞 - 仅生物材料的生物学与挤出生物打印结合在一起时,可能会出现定义明确的时空排列的器官。与仅通过细胞自组装纯粹产生的常规球形类器官相比,这些生物打印的类器官在体外表现出改善的一致性,差异效率和组织形成的穿孔。
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年7月26日。; https://doi.org/10.1101/2024.03.25.586638 doi:biorxiv Preprint
IATA-CSIC的研究团队在食品感官评估方面具有广泛的经验,并且在消费者行为衡量方面广泛地工作,以了解消费者接受和食品选择的驱动力,以与行业合作,在科学项目和项目中建立创新策略。
色素性视网膜炎和与年龄相关的黄斑变性是世界上不可逆视觉障碍的最常见原因。现有的治疗方法可能更有效,强调了新治疗的必要性。通过人类多能干细胞的移植来重建视网膜感受器,代表了一种有吸引力的恢复视力方法,已经获得了动力。本文详尽地说明了该领域已知的内容,发现的结果以及最近的进步。本评论论文概述了视网膜损伤/退化的病理生理学的视网膜组织,以及在视网膜再生中使用多能干细胞的背后推理。本文研究了分化策略,决定细胞类型规范的分子成分以及在体外进行视网膜发育的娱乐,遗传工程和操纵表观遗传标记,使用各种技术来驱动特定的细胞命运并提高治疗疗效。
如 [16]-[18] 所示,仅当车速不太低且制动持续一段时间时,再生制动才会导致显著的能量存储。因此,控制策略应该能够根据实际驾驶条件有效评估是否执行再生制动或依靠机械制动。在牵引阶段也会出现同样的决策问题。确定电动机应提供多少机械扭矩来协助骑车人踩踏属于能量管理系统 (EMS) 的决策范围。已经提出了多项研究,其目标是优化用户的骑行质量并最大限度地提高电池中储存的能量 [13]。最后,如表一所示,许多研究都集中在优化能量存储上。这些研究的目标是为特定应用选择最合适的电池技术,并优化其数量以确保足够的续航里程来完成给定的驾驶任务 [14]-[15]。