对返回的月球样品的分析表明,总碳含量在50至200 ppm不等,来自土著和外部来源(例如太阳风和微观元素)的贡献[2-4]。在月球样品中发现的碳种类中,二氧化碳(CO 2)是最丰富的碳(CO 2),占总碳的约10–30%[3]。值得注意的是,在大多数阿波罗样品中对CO 2的检测并非仅与火山活性相关。相反,它的存在与岩石晶粒的大小密切相关,表明月球土壤中CO 2的主要来源是太阳风[2,5]。相比之下,其他气态物种(例如一氧化碳(CO)和甲烷(CH 4))仅出现在痕量中,强调CO 2作为主要的挥发性相[2,4]。剩余的农历碳库存主要是元素形式,反映了月球的减少表面环境[3]。
未来对月球的任务将彻底改变我们的行星殖民化方法。这些任务的核心是对月球表面上丰富的月球灰尘和雷果的有效管理和利用。正在探索一种创新的方法,即具有微生物,尤其是丝状真菌的原位研究利用(ISRU)。这些是通过称为生物无能或生物培训的过程从月球岩石中提取有价值的金属和矿物质的有前途的候选人。该技术旨在使用当地的月球材料来支持月球长期操作,从而减少对基于地球的昂贵的补给的需求。
快速原型设计和测试是早期技术研发中常见的迭代设计的关键推动因素。在尘土飞扬的环境中进行测试对于准备低温磁耦合器进行月球操作至关重要。为了能够对尘土缓解概念进行早期和迭代测试,美国国家航空航天局 (NASA) 阿姆斯特朗飞行研究中心 (加利福尼亚州爱德华兹) 开发了一种低成本、低保真度的代表性月球风化层环境。基于对该测试装置的初步测试,类似的装置可能会引起大学和其他实体的兴趣,这些实体希望开发使用月球风化层模拟物安全测试相对小规模组件的能力。本文介绍了该月球风化层测试室的开发和初步测试的结果。还讨论了进一步的开发策略,以潜在地改进该装置。
众所周知的短语“您可以从石头上获取血”用于描述一项任务,无论施加了多少力量或努力,几乎都是不可能的。这句话非常适合人类对火星的第一个船员任务,这可能是有史以来最困难和技术上具有挑战性的人类努力。与向火星表面交付有效载荷相关的高成本和显着的时间延迟意味着对原位资源的剥削(包括无机岩石和尘埃(Regolith),水沉积和大气气体)将是机组人员对红色星球的任何船员任务的重要组成部分。然而,通过定义的任何船员任务也可以使用一种重要的,但长期被忽视的自然资源来源,这些资源也将被定义:船员本身。在这项工作中,我们探索了人血清白蛋白(HSA)的使用(HSA)(一种从血浆获得的常见蛋白质)作为模拟月球和火星岩石的粘合剂,以生产所谓的“外星Regolith Biocomposites(ERB)”。 '本质上,可以在体内生产的宇航员生产的HSA可以半连续地提取,并与月球或火星岩层结合使用,以“从血液中获取石头”,以重塑谚语。采用简单的制造策略,产生了基于HSA的ERB,并显示出高达25.0 MPa的抗压强度。进行比较,标准混凝土通常具有20至32 MPa之间的抗压强度。此外,我们证明了HSA-ERB具有3D打印的潜力,为使用人类衍生的原料开辟了一个有趣的潜在潜在途径,以实现外星的建设。在某些情况下,尿素的掺入可以从尿液,汗水或眼泪中提取 - 在某些情况下可以将抗压强度进一步提高300%以上,其表现最佳的配方的平均抗压强度为39.7 MPa。研究了粘附的机制,并归因于脱水引起的蛋白质二级结构重组为密集的氢键,超分子β-链网络 - 类似于蜘蛛丝的凝聚力机制。进行比较,还研究了合成的蜘蛛丝和牛血清白蛋白(BSA)为Regolith Binders,也可以在火星菌落上生产具有生物制造技术未来进步的火星殖民地。
• Jennifer Edmunson 博士 - MSFC PM MMPACT • Frank Ledbetter 博士 - SME 空间制造 (ISM) 和 MMPACT • Mike Fiske - Jacobs/MSFC 元素主管 MMPACT/Olympus • Mike Effinger - MSFC 元素主管 MMPACT/MSCC • Tracie Prater 博士 - MSFC 基础表面栖息地 • Dave Edwards 博士 - MSFC 材料科学经理 • Mike Sansoucie - MSFC 投资组合科学家 • John Vickers - 首席技术专家 (PT) 先进制造 • Jerry Sanders - SCLT 原位资源利用 (ISRU) • Mark Hilburger 博士 - PT 挖掘、施工和舾装 • Jason Ballard - ICON Technologies 首席执行官 • Evan Jensen - ICON PM MMPACT • SEArch+ - ICON/MMPACT 月球建筑设计概念 • Bjarke Ingels Group - ICON/MMPACT 月球建筑设计概念 • Aleksandra 博士Radlinska – 宾夕法尼亚州立大学水泥和土工聚合物 • Peter Collins – 宾夕法尼亚州立大学水泥和土工聚合物
致谢:感谢曼彻斯特大学伦敦大学和ESA ECSAT的Vulcan的支持。这个夏季实习期间的支持是无价的。参考:[1] K. A. Farley等。(2022)科学,377,2196。[2] J. F. Bell III等。(2022)Sci Adv,8,4856。[4] A. Udry等。(2023)J GEOPHYS RESPARETS,128E2022JE007440。[5] V. Z.Sun等。 (2023)J Geophys Respanets,128。 [6] J. V Clark等。 (2020)Icarus,351,113936。 [7]Nørnberg,P等。 (2009)。 行星和太空科学,57,628-631。 [8] Manick K.等。 (2025)LPSC摘要[9] A. Vaughan等。 (2023)。 J Geophys Respanets,128。 [10]听到。 C(2004)AGU秋季会议摘要,V41d-06。Sun等。(2023)J Geophys Respanets,128。[6] J. V Clark等。(2020)Icarus,351,113936。[7]Nørnberg,P等。(2009)。行星和太空科学,57,628-631。[8] Manick K.等。(2025)LPSC摘要[9] A. Vaughan等。(2023)。J Geophys Respanets,128。[10]听到。C(2004)AGU秋季会议摘要,V41d-06。C(2004)AGU秋季会议摘要,V41d-06。
摘要NASA的Artemis计划的目标是创建持续的月球存在,以提供前所未有的科学发现机会,并确保行业获得无限的资源和空间中无限的资源和商业潜力。为了实现这一目标,NASA必须逐步发展和扩展其能力,超出阿波罗计划的短月,到基础设施和设备的持续存在,以降低任务风险。肯尼迪航天中心的粒状力学和雷戈林运营实验室(又称A.沼泽作品)与SpaceFactory和Lera咨询结构工程师合作,开发了可机器人可建造的不压力庇护所的建筑和结构设计。庇护所,称为月球基础设施资产(LINA),旨在保护宇航员和地面资产免受辐射,流星撞击,热梯度以及承受月球Quotakakes的侵害。使用Regolith聚合物复合材料开发了一种融合的颗粒状制造(FGF)施工过程。讨论了施工系统和相关的打印参数以及环境模拟设备以及测试条件的摘要。测试样品在肮脏的热真空条件下打印(〜10 -3 Torr,〜 -200°C),LINA的量表版本印在真空中的Regolith Simulant Sibtrate上(〜10 -4 Torr)。讨论了操作的全尺度设计优化,模拟和构建概念。
材料。然而,对月球中气体挥发物的准确描述非常重要,但很困难。理论上,在低压条件下的全周期挥发物流动的描述需要
随着长期月球探索和居住的追求越来越接近现实,人们正在广泛努力有效减轻月球表面尘埃的污染和渗透。这种尘埃对人类有害,往往会顽固地粘附在所有暴露的表面上,导致性能问题并最终导致失败。虽然已经开发了几种主动和被动技术来应对这一挑战,但评估这些技术在实际月球环境中的性能极其重要。风化层粘附特性 (RAC) 实验有效载荷为这种评估提供了重要机会。RAC 有效载荷由 Alpha Space 为美国国家航空航天局 (NASA) 设计,计划于 2023 年搭乘 Firefly Aerospace Blue Ghost 着陆器飞往月球。由于可用于此次任务的材料数量有限,因此做出明智的选择至关重要。NASA 兰利研究中心选择了两种聚合物、一种碳纤维增强复合材料和一种金属合金作为多样化的结构材料。每种材料都使用激光烧蚀图案进行地形修改。本文简要介绍了此次月球表面实验所选用的被动式除尘材料和表面的选择和测试程序以及获得的一些结果。
摘要 在亚马逊等热带地区,尽管红土覆盖层蕴藏着经济价值的矿物,并且与剥蚀和风化层景观研究有着密切的关系,但尚未得到妥善的测绘。为了整合风化层制图工具,我们整合了地球化学和地球物理数据(航空伽马射线光谱和磁力测量)。生成并应用了区域指数(包括风化强度指数 WII、红土指数 LI 和风化层指数 MI),从而可以识别风化层特性。WII 突出显示了位于海拔 149 至 300 米和 500 至 627 米之间的风化程度较高的区域,这些区域分别与下夷平面和上夷平面相关。LI 批准了 WII,并强调了 Th/K 和 U/K 比值较高的区域,这些区域与红土硬壳有关。LI 和 MI 之间的相关性表明,红土硬壳与镁质和长英质基质有关,尤其是在海拔 300 米以下,这证实了地球化学数据。所有这些结果都导致将以前被认为是沉积物的区域重新解释为与氧化土和红土硬壳相关的残留物,这使我们能够提出,风化层测绘技术和模型生成(风化强度和红土指数)具有良好的可靠性。