通过 LDA 进行高精度介电常数测量:探测块状月壤密度和假定的月球冰。 [PubMed] Miyamoto H. 1,2,Kobayashi M. 1,Murakami T.,Takekura S. 1,Toida A. 1,Shimizu Y. 1,Takemura T.,Yoshimitsu T. 3,Usami N. 3,Otsuki N. 9,T Niihara 10,T USUI 2,H Nagaoka 7,K Saiki 7,J Culton 2,E ASPHAUG 11,P MICHEL 1,12,T HIMENO 1,M WATANABE 1,1 TOKYO,TOKYO,TOKYO UNISWERY OF TOKYO UNIOSYEN,2 ADELAIDE UNIOSSION,2 ADELAIDE UNISWERS,2 JAXA,3 JAXO,4 CHUOO UNIXPY SERMES,4 CHUOY UNIXICY约翰·霍普金斯(Johns Hopkins)应用物理实验室,冈马科学大学10号,亚利桑那大学11号,13 Gakushuin University
火星表面受到来自太阳和宇宙的高能带电粒子的轰击,与地球相比,几乎没有任何防护。由于航天机构正在计划对这颗红色星球进行载人飞行,因此人们主要担心的是电离辐射对宇航员健康的影响。将暴露量保持在可接受的辐射剂量以下对机组人员的健康至关重要。在这项研究中,我们的目标是了解火星的辐射环境,并描述保护宇航员免受宇宙辐射有害影响的主要策略。具体来说,我们使用 Geant4 数值模型研究了火星辐射场中各种材料的屏蔽特性,并通过 MSL RAD 的现场仪器测量验证了该模型的准确性。我们的结果表明,复合材料(如塑料、橡胶或合成纤维)对宇宙射线具有类似的响应,是最好的屏蔽材料。火星风化层具有中间行为,因此可以作为额外的实用选择。我们表明,最广泛使用的铝与其他低原子序数材料结合使用时可能会有所帮助。
摘要 可持续太空探索需要改进原位资源利用 (ISRU) 技术,特别是利用当地资源生产机器人和人类探索所必需的产品。利用当地资源(如水)的能力不仅可以解决从地球运输物资的后勤挑战,还可以显著降低与太空任务相关的成本。水被列奥纳多达芬奇视为自然的驱动力,是太空探索的关键资源。作为宇航员的消耗品、辐射屏蔽以及电解成氢和氧(一种高效的火箭推进剂组合)描述了它的多种应用。然而,原位水提取在技术上仍然具有挑战性,需要进一步开发。LUWEX 项目通过开发和验证完整的原位水工艺链(包括提取、净化和质量监测)来应对这一挑战。它设想利用月球风化层中的水来推进并供宇航员饮用,从而实现可持续的太空探索。该综合测试装置使用热真空室内的冰冷月球尘埃模拟物模拟月球条件,旨在将整个流程链的技术就绪水平 (TRL) 从 2 级和 3 级提升到 4 级(即功能验证),一些子系统甚至可达到 TRL 5(即在相关环境中进行验证)。本文讨论了该项目的目标和相应的方法,强调了先进的水提取、捕获、净化和质量监测技术的开发和验证。通过这些技术,LUWEX 寻求为未来由欧洲主导的太空探索任务贡献创新的月球水提取和净化系统。本文概述了系统设计,并详细介绍了项目的技术发展路线图,阐述了 LUWEX 对未来探索任务的适应性,强调了其预计的潜力和长期目标,并概述了潜在的地面应用策略。转向可持续实践增强了我们执行长期任务的能力,最大限度地减少了对地球资源的依赖,从而提高了太空探索的可行性和可负担性。关键词:原位资源利用 (ISRU)、月球水提取、可持续技术、月球风化层、水净化 1. 简介 1.1 背景和动机 长期载人月球探索需要原位资源利用 (ISRU),以通过最大限度地减少质量、成本和风险来增强未来任务的能力 [1] ISRU 技术旨在利用本地资源为机器人和人类任务生产必需产品,
当您在团队中拥有一个好的动画师时,生活在地球安全范围之外的行星或月球上似乎是一个束缚。para溜槽打开,发动机无聊,使您的航天器可甜蜜地亲吻柔软的外星orgolith,愉快地摆脱了险恶的巨石,clifs和峡谷。可以将班车带到距离太空港口几公里的新建立的基地,效率与日本火车媲美。在那里,现场充满了能力的工人忙碌地尽自己的一部分 - 挖,探测,指向,建筑物,运输,就像吹口哨矮人一样快乐。您与巨大的金色圆顶圆顶一起穿过,里面装有一个名副其实的伊甸园,蔬菜在那里变得郁郁葱葱,无枯萎。然后,您在加压栖息地的阈值中轻轻地踩到阈值,几乎没有想到您在骨头微型重力中经过宇宙辐射汤的长达数月的危险航行。,当您将其带到您时尚的生活阶段时,您会躺在床上,想着,如果只有一切都很好,就可以回家。
虽然这项技术尚未在太空中应用,但已在地球上进行过多次模拟现场测试。2008 年,首次月球 ISRU 表面操作模拟现场测试在夏威夷由 NASA、加拿大航天局 (CSA) 和德国空气和空间研究中心 (DLR) 开发的场地进行 [5]。这次测试的目的是展示原型硬件和端到端运行的集成系统的操作,该系统具有以下功能:挖掘材料、生产氧气和储存产品 [5]。其中一个原型系统是洛克希德·马丁宇航公司的 Precursor ISRU 月球氧气试验台 (PILOT),它使用翻滚反应器混合和加热风化层 [5]。另一个测试的原型是 NASA 的 ROxygen,它使用垂直反应器而不是像 PILOT 那样的旋转反应器。垂直反应器与流化床和内部螺旋钻一起使用 [5]。在试验中,PILOT 完成了六次反应堆操作,而 ROxygen 完成了五次。由于模拟现场试验之前系统验证有限,两个系统都未能成功电解提取的水。然而,当用去离子水进行测试时,其他系统功能是有效的 [5]。
灰尘会通过多种方式损坏硬件。第一种是灰尘进入刚体机构元件之间的间隙。由于风化层的特性(将在下一节中进一步描述),这种侵入会增加运动副的摩擦,在某些情况下,甚至会完全堵塞它们。传统的方法是将接头密封起来,使其与尘土环境隔绝。然而,正如阿波罗的经验所表明的那样,月球尘埃的磨蚀特性往往会破坏密封 [1]。这意味着传统的密封件容易损坏,并且可能只是推迟了受保护的运动副中不可避免的摩擦增加。灰尘磨损也会对预期保持光滑的表面产生负面影响,例如宇航服的护目镜、太阳能电池板、热涂层、传感器表面等 [4]。热表面会因灰尘而退化,不仅是通过磨损,还通过灰尘堆积,因为它会改变热发射率和/或有效暴露表面 [2]。最后,导电元件可能因累积电荷的破坏性介电放电而受到严重损坏,包括敏感的微电子元件。正如所证明的,与灰尘有关的损坏机制差别很大,因此需要针对灰尘缓解挑战的定制解决方案。
对太空资源的需求迫在眉睫。目前,NASA 正在建造月球门户空间站,作为未来太空探索任务的门户,并将于 2025 年开放。加拿大已经为该项目投入了高达 20 亿美元的资金,包括新的加拿大臂和其他贡献。能够从门户为火箭提供燃料是未来太空探索的关键。从月球上运送氧化剂燃料(氧气)是一种比从地球运送更经济、更可持续的替代方案,因此 NASA 和其他机构正在争取其国家的支持。中国和俄罗斯也承诺在 2025 年开放月球基地,加速全球时间表。通过提取过程,可以生产出许多有用的衍生产品,例如水、稀有金属和关键矿物,这些产品也很受欢迎,具有国家战略重要性。此外,由于月球风化层已被证明具有很高的源材料利用率,因此可以制造用于太空基础设施的 3D 打印部件。通过使太空中的大规模作业更加可持续和经济实惠,ISRU 将促进地球上同样重要的技术的研究、开发和进步,包括水处理、氢存储、能源生产、机器人技术、3D
在空间风化的样品中应用计算机视觉算法来自动化太阳粒子轨道分析。K. Heller 1,J。A. McFadden 1,M。S. Thompson 1。 1地球,大气和行星科学系,普渡大学,西拉斐特,47907年(mcfadde8@purdue.edu)。 简介:暴露于太阳风辐射和其他高能离子流的来源导致在太阳系上无空体表面上土壤的空间风化[1,2]。 尤其是,太阳能耀斑的太阳能颗粒(SEP)对晶粒的辐照,可以将毫米穿透到地表岩石上,从而导致晶粒内部晶体结构损伤的线条。 这些SEP轨道可以通过对透射电子显微镜(TEM)中土壤样品的分析来揭示。 通过TEM图像测得的晶粒中这些SEP轨道的密度可用于基于校准的生产速率生成暴露时间表[3]。 对这些SEP轨道密度的分析可在无气体表面上的太空风化和太阳辐射过程以及雷果石混合和重新加工时间表上产生宝贵的见解。 直到最近,对TEM图像中的SEP轨道的识别和分析主要是手工执行的,这是一种耗时的实践。 但是,机器学习领域(ML)和计算机视觉领域的进步使机器的视觉能力能够通过适当的神经网络设计和培训数据匹配和超越人类的能力[4,5,6]。 这两个模型在结构上是相同的,但在培训数据上却有所不同。A. McFadden 1,M。S. Thompson 1。1地球,大气和行星科学系,普渡大学,西拉斐特,47907年(mcfadde8@purdue.edu)。简介:暴露于太阳风辐射和其他高能离子流的来源导致在太阳系上无空体表面上土壤的空间风化[1,2]。尤其是,太阳能耀斑的太阳能颗粒(SEP)对晶粒的辐照,可以将毫米穿透到地表岩石上,从而导致晶粒内部晶体结构损伤的线条。这些SEP轨道可以通过对透射电子显微镜(TEM)中土壤样品的分析来揭示。通过TEM图像测得的晶粒中这些SEP轨道的密度可用于基于校准的生产速率生成暴露时间表[3]。对这些SEP轨道密度的分析可在无气体表面上的太空风化和太阳辐射过程以及雷果石混合和重新加工时间表上产生宝贵的见解。直到最近,对TEM图像中的SEP轨道的识别和分析主要是手工执行的,这是一种耗时的实践。但是,机器学习领域(ML)和计算机视觉领域的进步使机器的视觉能力能够通过适当的神经网络设计和培训数据匹配和超越人类的能力[4,5,6]。这两个模型在结构上是相同的,但在培训数据上却有所不同。在这里,我们应用这些ML技术来开发一个原型自动化程序,该程序可以自动检测和分析TEM图像中的SEP轨道,从而使未知样本中的SEP轨道更有效,更准确地注释。方法:机器智能程序(“模型”)旨在查找和计算提供的TEM图像中的所有SEP轨道,包括潜在的微弱或“隐形”轨道。由于轨迹而言,由于主要是与背景材料不同的强度线段的线段,该模型旨在识别线性强度差异的区域。两种单独的型号经过训练以提高性能 - 一种在较暗的背景(LOD)上搜索较轻的曲目,而一种搜索较轻的背景(DOL)上的较暗轨道(DOL)。拆分模型的决定在很大程度上旨在改善训练时间和模型性能,因为示例往往由LOD或DOL轨道组成。因此,将模型拆分可改善训练时间并减少处理时间,因为训练集和应用的差异减少为更简单,较小的模型提供了空间。此外,这使该模型可以应用于两种不同类型的扫描TEM(STEM)成像模式:深色场(DF),其中SEP轨道显得比周围的晶体更明亮,而明亮场(BF),其中SEP轨道显得比周围的晶体更暗。由于计算机以抽象的结构可视化数据,分析是按像素度量进行的,而不是与测量相关的
月球陨石坑观测和传感卫星 (LCROSS) 任务发现的数百万吨冰水被认为是月球上最宝贵的资源。从月球风化层中提取这些水冰需要非常高的热能输入,相反,在近真空环境中捕获这些水蒸气也需要很大的冷却能力。因此,有必要为未来由放射性同位素驱动的月球冰采矿车开发专用的热管理系统 (TMS)。根据 SBIR 第一阶段计划,Advanced Cooling Technologies, Inc (ACT) 与 Honeybee Robotics (HBR) 合作开发了一种热管理系统,该系统可以战略性地利用核动力源的废热来升华月球冰土中的水蒸气,并使用月球环境温度作为散热器来重新冻结冷阱容器内的升华蒸气。这样,就可以在降低系统质量和占地面积的情况下,最大限度地减少冰提取和蒸汽收集所需的电能。进行了初步权衡研究,设计了 TMS 的多个热组件,包括基于废热的热芯和热管散热器冷阱罐。开发并测试了概念验证原型。设计了一个可能满足 NASA 采矿目标的初步全尺寸系统,并估算了采矿效率、系统质量/体积和功耗(电能和热能)。
在地球以外的行星上设计永久的人类居住地是几十年前提出的想法,在阿波罗任务中第一批人类登陆月球后,这一想法变得更加重要。当今蓬勃发展的技术进步加上雄心勃勃的任务,例如火星洞察号任务和月球阿尔忒弥斯计划,使太空殖民的愿景比以往任何时候都更加现实,因为它不断获得动力。目前有相当多的出版物涉及多个学科,涉及月球和火星环境的探索、这些行星的土壤特性以及第一个可居住模块的设计。本文的范围是精心挑选出与以下科学领域相关的最重要的出版物:(a) 岩土工程方面,包括月球和火星风化层样品和模拟物的机械特性和化学成分,以及作为潜在基础形式的锚固和刚性垫元素;(b) 不同类型的月震和流星体撞击引起的地面运动; (c) 外星 (ET) 结构的不同概念和类型(通用、充气、可部署、3D 打印),以及拟议的外星栖息地的总体视图。除了本文正文中提供的详细信息外,我们还努力将大部分信息总结并汇编成代表性表格,并按时间顺序呈现,以展示人类对外星结构的思维演变。
