i将讨论用于在保形的引导程序中数值求解交叉方程的随机优化技术。通过使用增强学习算法来告知这种方法。我将为1D线缺失的CFT提供结果,但也突出显示其更广泛的适用性。
强化学习是机器学习的第三主要类别,以及受监督和无监督的学习。此技术用于顺序决策问题,在这种决策问题中,代理采取了最大化其预期累积奖励的动作。与深度神经网络(称为深度增强学习)结合使用,该技术用于许多领域的控制问题。本课程单元的目的是将基本原则和现代范式应用于强化学习,以便学生可以独立地独立理解和构建该领域的新学术文献。讨论了单一代理和多代理情况。在许多作业中,学生获得动手经验
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:免疫检查点抑制剂已改善了许多癌症的治疗方法。但是,免疫相关(IR)不良事件可能会限制其使用。罕见但潜在的IR不良事件是IR-胆管炎,主要是由反编程细胞死亡1(PD1)抗体诱导的,通常是耐皮质类固醇。因此,增加了免疫疗法的疗法,这会干扰抗肿瘤反应并承受感染的风险。我们报告了2例BRAF V600E突变黑色素瘤患者,他们在三胞胎治疗下与Atezolizumab [抗 - 程序性细胞死亡配体1(PD-L1)抗体],Vemurafenib(BRAF抑制剂)和cobimetinib(Mek Mek Inbibitor)一起出现了IR骨状胆管炎。在这两种情况下,皮质类固醇的给药最初都会导致边缘改善,但随后是胆汁酶的反弹,随后出现了伴有细菌血症的化脓性肝脓肿。肝脓肿在没有先前的侵入性手术的情况下开发,这意味着应考虑采用更严格的IR抑制性疗法治疗IR-胆管炎的方法。就我们的知识,我们报告了第一个2例IR-胆管炎病例和随后的肝脓肿,而没有先前的浸润性干预,这是三胞胎治疗引起的第一个IR-胆管炎病例,其中2例抗PD-L1中有2例在抗PD-L1诱发的病例中,有助于抗PD1和抗抗PD1和抗抗抗血症抗血脂症。需要改善IR-胆管炎的治疗策略,以防止威胁生命的感染并发症。
强化学习(RL) - 找到最大化所收集的长期累积奖励的操作行为(也称为策略),这是机器学习中最有影响力的机器学习中的最大影响之一。在几个决定性问题中,人们面临政策转换的可能性(从车道政策变为新政策),这会损害不容易忽略的成本,而在决定中,人们可以使用历史数据,而没有可用的数据,而无需进行进一步的在线互动。尽管这是最重要的,但据我们所知,这很重要,但几乎没有努力解决以一种灵活和原则性的方式解决收益和转换成本之间的关键问题。利用最佳运输领域的思想,我们将系统转换的系统研究局限于局部的RL。我们建立了基本属性,并为拟议的新型切换公式设计了净活动界算法。数字实验证明了我们的方法在体育馆的多个机器人控制基准和SUMO-RL的光照控制上的效率。
摘要:加强学习的最新进步使得培养足球代理人,以模仿人类球员的行为。但是,现有方法成功复制现实的玩家行为仍然具有挑战性。实际上,代理商表现出诸如在球周围聚集或过早射击之类的行为。此问题的一个原因在于奖励功能总是为某些行动分配巨大的奖励,例如得分目标,无论情况如何,这种情况都会使代理人偏向高奖励行动。在这项研究中,我们将相对位置奖励和拍摄的位置重量纳入用于增强学习的奖励功能中。相对位置奖励,源自球员,球和目标的位置,是使用逆强化学习在真正的足球游戏数据集中估算的。拍摄的位置重量类似地基于这些游戏中观察到的实际射击位置。通过在真正的足球游戏中获得的数据集中进行实验,我们证明了相对位置奖励有助于使代理商的行为与人类玩家的行为更加紧密地保持一致。
我们介绍了动态上下文Markov Deci-Sion过程(DCMDPS),这是一个新颖的增强学习框架,用于与历史有关的环境,该框架概括了上下文的MDP框架来处理非Markov环境,其中上下文随时间而变化。我们考虑了模型的特殊情况,重点关注dcmdps,这通过利用粒子函数来确定上下文转换,从而破坏了对历史长度的指数性。这种特殊的结构使我们能够得出一种上层封闭的样式算法,我们为此建立了遗憾的界限。以我们的口感结果的启发,我们引入了一种基于模型的实用算法,用于在潜在空间中计划,并在历史依赖的特征上使用乐观态度。我们在推荐任务(使用Movielens数据)上演示了我们方法的效率,在该任务中,用户行为动态响应建议而演变。
强化学习算法通常在没有密集,形状良好的奖励功能的情况下挣扎。本质上动机的利用方法通过奖励访问新颖状态或过渡的代理来解决这一限制,但是这些方法在大多数发现的新颖性与下游任务无关的大环境中提供了有限的好处。我们描述了一种使用文本语料库中背景知识来塑造探索的方法。此方法称为Ellm(e xploring at llm s)奖励代理,以实现由促使代理当前状态描述的语言模型所建议的目标。通过利用大规模的语言模型进行预处理,Ellm指导代理人朝着人类善意而有用的行为来实现,而无需在循环中进行人类。我们在手工游戏环境和管家机器人模拟器中评估ELLM,表明经过训练期间,经过ELLM训练的代理在训练过程中具有更好的覆盖范围,并且通常在一系列下游任务上匹配或提高性能。
人类是自动特工,他们通过设定和追求自己的目标来学习。但是,指导人类目标选择的确切机制尚不清楚。学习进度通常以观察到的性能变化而衡量,可以为人类和人造药物的目标选择提供宝贵的信号。我们假设人类对目标的选择也可能是由潜在的学习进步驱动的,那么人类也可以通过了解其行动和环境来估算这些进步,即使没有立即发生绩效的改变。为了检验这一假设,我们设计了一项分层增强学习任务,其中人类参与者(n = 175)反复选择自己的目标并学习了目标条件政策。我们的行为和计算建模结果证实了潜在学习进度对目标选择和揭示个体间差异的影响,这部分是通过识别环境层次结构的介导的。通过研究潜在学习进度在人类目标选择中的作用,我们为更有效和个性化的学习经历以及更类似人类的自动机器的发展铺平了道路。