简介 酶 酶是一种生物催化剂,本质上是蛋白质,有助于加快新陈代谢和化学反应的速度,存在于所有生物体中。在化学中,酶已成为首选工具,由于其能够以高特异性和效率进行反应,因此在工业过程中的使用越来越多(Nigam,2013;Kumar 和 Sharma,2016;Rekik 等人,2019)。在已鉴定的 3000 多种酶中,只有约 5% 被用于工业(Robinson,2015)。酶的工业应用大大减少了许多行业的能源需求,工业中应用酶产生的废物是可生物降解且无毒的废物,对环境友好。此外,酶的使用
Abramian, D., & Eklund, A. (2019)。Refacing:使用 GAN 重建匿名面部特征。2019 年 IEEE 第 16 届国际生物医学成像研讨会 (ISBI 2019) 上发表的论文,1104 – 1108。https://doi.org/10.1109/ISBI.2019.8759515 Bishop, DVM (2016)。开放式研究实践:意想不到的后果以及避免这些后果的建议。(对同行评审开放倡议的评论)。 Royal Society Open Science,3 (4),160109。https://doi.org/10.1098/rsos.160109 de Sitter, A., Visser, M., Brouwer, I., Cover, KS, van Schijndel, RA, Eijgelaar, RS … Vrenken, H. (2020)。神经影像中的隐私问题:删除面部特征会降低图像分析方法的性能。欧洲放射学,30 (2),1062 – 1074。https://doi.org/10. 1007/s00330-019-06459-3 Duan, D., Xia, S., Rekik, I., Wu, Z., Wang, L., Lin, W., … Li, G. (2020)。基于皮质的个体识别和个体变异分析
论文 ID 标题/作者 指定会议 6 时空对比网络用于冠状动脉 CT 血管造影中冠状动脉疾病的数据高效学习 马兴华,邹明业,方欣燕,刘洋,罗恭宁,王伟,王宽泉,邱兆文,高鑫,李硕 海报 5 14 TP-DRSeg:通过显式文本提示辅助 SAM 改善糖尿病视网膜病变病变分割 李文学,熊新宇,夏鹏,鞠烈,葛宗元 海报 4 26 用于外科三联体识别的尾部增强表征学习 桂双春,王振坤 海报 1 40 MH-pFLGB:通过全局旁路模型进行医学图像分析的异构个性化联邦学习 谢璐媛,林曼青,徐晨明,栾天宇,曾志鹏,文俊Chen, Cong Li, Yuejian Fang, Qingni Shen,zhonghai Wu 海报 2 50 FM-ABS:即时基础模型驱动 3D 医学图像分割的主动无监督学习 Zhe Xu, Cheng Chen, Donghuan Lu, Jinghan Sun, Dong Wei, Yefeng Cheng, Quanzheng Li, Raymond Kai-yu Tong 海报 1 53 心脏副驾驶:使用世界模型自动引导超声心动图蒋浩军、孙振国、贾宁、李萌、孙宇、罗沙琪、宋世吉、黄高海报 2 65 拥抱海量医疗数据 周宇成、周宗伟、Alan Yuille 海报 1 67 掩蔽缺失:不完整多模态脑肿瘤分割的任意跨模态特征重建 曾志林、彭泽林、杨小康、沉伟海报 4 73 迈向直肠内超声视频中结直肠癌分割的基准:数据集和模型开发 Yun Cheng Jiang、Yiwen Hu、Zixun 张、Jun Wei、Chun-Mei Feng、Xuemei Tang、Xiang Wan、Yong Liu、Shuguang Cui、Zhen Li 海报 5 74 UinTSeg:统一婴儿脑组织分割与解剖描绘 Jiameng Liu、Feihong Liu、Kaicong Sun、Yuhang Sun、 Jiawei Huang, Caiwen Jiang, Islem Rekik, Dinggang Shen 海报 2 77 XCoOp:通过概念引导上下文优化实现计算机辅助诊断的可解释即时学习 Yequan Bie, Luyang Luo,zhixuan Chen,hao Chen 海报 5 78 DiffExplainer:通过反事实生成揭开黑盒模型 Yingying Fang, Shuang Wu, Zihao Jin, Shiyi Wang, Caiwen Xu, Simon沃尔什·光阳海报 5
目前,自闭症谱系障碍的诊断主要依靠临床医生的症状和行为来判断。但这些方法要求医生具备很高的专业知识,且诊断结果容易受到医生的主观性影响。为了寻找更客观的生物标志物来识别自闭症谱系障碍,许多研究者致力于从遗传学、表观遗传学、身体代谢和神经影像学等角度寻找有效的生物标志物( Goldani et al., 2014 )。神经影像学被认为是一种很有前途的非侵入性技术,可以揭示人脑的潜在模式。利用结构磁共振成像(sMRI)、功能磁共振成像(fMRI)和正电子发射断层扫描(PET)等技术,可以将人脑建模为一个复杂的系统,各个区域执行不同的结构和功能。先前的神经影像学研究表明,在神经或精神疾病人群中,大脑的结构和功能连接都会发生交替( Mueller et al., 2013 )。在各类检查方法中,fMRI,尤其是记录血氧水平依赖性 (BOLD) 信号变化的静息状态 fMRI (rs- fMRI),已广泛用于研究阿尔茨海默病 (Qureshi et al., 2019b)、精神分裂症 (Yan et al., 2019) 和 ASD (Abraham et al., 2017) 等精神疾病。功能性磁共振成像数据以高维 (∼ 100 万) 的 4 维矩阵格式组织,包含空间和时间信息。这使得直接利用原始数据作为分类算法的输入成为一项艰巨的任务。为了解决数据的高维性,已经提出了许多降维技术 (Abdi and Williams, 2010; Suk et al., 2015; Soussia and Rekik, 2018)。一些人没有使用原始 fMRI 数据,而是提出了脑功能网络分析来描述感兴趣区域 (ROI) 之间的“关系”。基于脑血流会刷新脑各区域的神经活动这一事实,对功能连接 (FC) 进行建模有助于理解精神障碍的神经基础 (Lindquist, 2008)。最常用的 FC 模型是 Pearson 相关性,可以使用两个脑区之间的 BOLD 信号来计算。脑功能网络 (BFN) 是根据图谱预先定义的所有位置的 FC 强度构建的。BFN 构建方法明确将维数从 4 维降低为 1 维向量。许多机器学习 (ML) 方法已成功用于与 ASD 相关的改变的 BFN 的自动分类 (Uddin 等人,2013;Abraham 等人,2017)。一些方法采用稀疏方法,通过在损失函数中添加额外的稀疏正则化项(例如,Lasso(Tibshirani,1996)或Elastic Net(Zou and Hastie,2005))来实现隐式降维。然而,常用来描述 ROI 之间 FC 的相关性仅捕捉线性关系,不适合表征高阶或非线性特征(Shojaee et al., 2019)。此外,将数据折叠成特征向量(向量化)会丢弃脑区的空间信息(Kong et al., 2019)。此外,传统的分类算法,如支持向量机(SVM)(Cortes and Vapnik, 1995)、随机森林(Liaw and Wiener, 2002)和朴素贝叶斯(Rish, 2001)属于浅层分类
