2024 年 10 月 16 日 执行摘要:在关键的政府和军事行动中,每一秒都至关重要。Space Compass 正在部署一种基于太空的架构,可实现高达 10 Gbps 的数据速率。以这种速度,对太空中关键任务的支持可以发生转变,从而能够在几秒钟内而不是几小时或几天内交付图像和其他数据。本文研究了这种架构的工作原理,并讨论了它将对几个关键用例产生的影响。简介:Space Compass 光学数据中继服务能够加快数据移动速度、改善安全操作并实现比以往更高的容量。Space Compass 是世界知名电信提供商 NTT 与全球最大、最可靠的卫星通信公司之一 Sky Perfect JSAT Group 的合资企业。他们共同成立了 Space Compass,充分利用他们在卫星运营和光通信技术方面长期积累的专业知识,提供世界上第一个集成空间计算网络。空间集成计算网络:Space Compass 利用 JSAT 和 NTT 过去的广泛表现来设计太空中的高容量通信和计算基础设施。我们的光学数据中继服务利用此基础设施将数据从地球静止卫星高速传输到地面。我们的光学方法意味着速度和容量非常高,并且与我们的 GEO 架构相结合,可以缓解现有传统架构的限制。传统架构使用较慢的通信和较少的容量,并且在地面站视线范围内运行,所有这些都限制了性能。
NASA STI 计划由机构首席信息官主持运作。该计划收集、组织、归档和传播 NASA 的 STI。NASA STI 计划提供对 NASA 技术报告服务器 — 注册 (NTRS Reg) 和 NASA 技术报告服务器 — 公共 (NTRS) 的访问权限,从而提供世界上最大的航空航天科学 STI 集合之一。结果在非 NASA 渠道和 NASA 的 NASA STI 报告系列中发布,其中包括以下报告类型:• 技术出版物。已完成的研究或重要研究阶段的报告,介绍 NASA 计划的结果并包含大量数据或理论分析。包括被认为具有持续参考价值的重要科学和技术数据和信息的汇编。NASA 对应同行评审的正式专业论文,但对手稿长度和图形演示范围的限制不那么严格。• 技术备忘录。初步或具有专门意义的科学和技术发现,例如“快速发布”报告、工作文件和包含最少注释的参考书目。不包含广泛的分析。
要建立安全的Wi-Fi连接,站首先将几个未保护的管理框架与接入点(AP)交换,以最终互相验证并安装成对密钥。因此,对手可能会在物理(PHY)或MAC层上欺骗那些受保护的帧,从而促进其他攻击(例如,中间和饥饿攻击)。尽管做了一些临时努力,但仍然没有实际的方式来抵抗这些攻击。在本文中,我们提出实用方案在PHY层采用加密图,并结合了时间限制的技术来检测和减轻基于企业和基于802.1倍的公共网络中的此类攻击。我们的向后兼容方案将AP(或消息身份验证代码)的数字签名嵌入到框架前序信号中,并仅在连接建立过程中添加可忽略的延迟并获得98。在检测试图中继有效前置的攻击者时,有9%的真实位置率。此外,我们使用模型检查器和加密协议验证器对我们的方案进行正式的安全性分析,并在商业AP和USRP测试台上评估其性能。
中继通信卫星在月球背面和极地探测任务中发挥着重要作用。鹊桥中继通信卫星是为嫦娥四号月球背面着陆器和月球车提供中继通信支持的研制的,自2018年6月14日进入绕地月平动点2的halo任务轨道以来,已在轨运行30多个月,工作良好,为着陆器和月球车提供了可靠、连续的中继通信支持,完成了嫦娥四号月球背面软着陆和巡视探测任务。月球南极地区探测具有很高的科学价值,中国南极探测任务的新型中继通信卫星也在研究中。本文概述了鹊桥中继通信卫星的系统设计和在轨运行情况,提出了用于月球南极探测任务的中继通信卫星的系统概念。最后对月球中继通信卫星系统的未来发展进行了展望。
随着电网的快速发展,变电站中二级系统的结构和技术也在不断创新。新一代的智能变电站已为二级设备实现了在线监视功能,使继电器保护设备的某些状态变量成为可观察的指标。基于此,本文提出了一种新颖的继电器保护设备状态评估策略。首先,考虑了继电器保护评估水平边界划分的模糊性和不确定性,已经提出了基于正常云模型的中继保护风险评估方法。因此,由于历史统计数据的特殊性,采用了一种结合分析层次结构过程(AHP)和熵权重方法的权重计算方法,以消除权重计算过程中的主观因素。同时,设备操作风险水平是通过计算每个指标的相应评估水平的确定性来确定的。最后,在案例研究中,提出的方法用于评估继电器保护设备的状态,并通过分析结果来验证该方法的可行性和准确性。
摘要 — CubeSat 平台由于成本低廉且发射相对容易,在空间科学应用中的应用越来越广泛。它正在成为低地球轨道 (LEO) 及更远轨道上的关键科学发现工具,包括地球同步赤道轨道 (GEO)、拉格朗日点、月球任务等。这些任务及其科学目标的复杂性日益增加,必须得到通信技术同等进步的支持。每年都需要更高的数据速率和更高的可靠性。然而,CubeSat 平台的尺寸、重量和功率 (SWaP) 约束的减小给卫星通信领域带来了独特的挑战。目前缺乏专门针对 CubeSat 平台的通信设备。缺乏标准化、经过测试的设备会延长开发时间并降低任务信心。此外,使用 CubeSat 平台的任务通常会受到更困难的设计约束。天线的位置、尺寸和指向通常服从于有效载荷仪器和任务目标的要求。传统的链路裕度估计技术在这些情况下是不够的,因为它们强调最坏的情况。实际上,即使在一次通过过程中,实际链路参数也可能有很大差异。这为预测通信性能和安排地面站联系带来了新的挑战,但也为提高效率带来了新的机会。本文介绍了与 Vulcan Wireless, Inc. 合作为 CubeSat 平台设计的新型软件定义无线电 (SDR) 的集成、测试和验证过程。SDR 计划用于 NASA 戈达德太空飞行中心 (GSFC) 即将进行的 5 项 CubeSat 任务,包括地球同步转移轨道 (GTO) 任务,它还可以作为未来任务的标准和经过充分测试的选项,实现标准化、快速和低成本的 CubeSat 通信系统网络集成过程。已经开发了详细的模拟来估计这些任务的通信性能,采用了独特的天线位置和姿态行为
干旱基因编码SWI/SNF染色质重塑复合物的亚基,并经常在人类癌症中突变。我们研究了黑色素瘤患者的干旱突变,分子特征和临床结局之间的相关性。皮肤黑色素瘤样品(n = 1577)。在干旱基因(ARID1A/2/1b/5b)中,通过致病/可能的致病突变对样品进行分层。PD-L1表达。肿瘤突变负担(TMB) - - 定义为≥10个突变/mb。转录组特征可预测对免疫检查点抑制剂的反应 - 牙牙γ和T细胞发炎得分。实际总体生存(OS)信息是从保险索赔数据中获得的,从组织收集时间到上次接触日期,Kaplan-Meier估算得出。Mann – Whitney U,Chi-square和Fisher精确测试在适当的情况下应用,P值调整为多次比较。arid2突变更为普遍(11.0%:n = 451 vs 2.8%:n = 113),并同时使用ARID1A / ARID2突变在1.1%(n = 46)样品中。ARID mutations were associated with a high prevalence of RAS pathway mutations— NF1 ( ARID1A , 52.6%; ARID2 , 48.5%; ARID1A/2 , 63.6%; and ARID-WT, 13.3%; p < 0.0001) and KRAS ( ARID1A , 3.5%; ARID2 , 3.1%; ARID1A/2 , 6.5%; and ARID-WT, 1.0%; p = 0.018)),尽管BRAF突变在干旱熔化的队列中不太常见(ARID1A,31.9%; ARID2,35.6%; ARID1A/2,26.1%;和ARID-WT,50.4%; P <0.0001)。tmb-high在干旱突变的样品中更为常见(ARID1A,80.9%; ARID2,89.9%; ARID1A/2,100%; ARID-WT,49.4%; P <0.0001),而PD-L1阳性相似ARID-WT,44.9%; p = 0.109)。与ARID-WT相比,ARID1A突变患者的DMMR/MSI-H患病率更高(2.7%vs 0.2%,P = 0.030)。与ARID-WT相比,在ARID2突出的样品中,IFN-γ和T细胞特征的中值更高(IFN-γ: - 0.15 vs-0.21,p = 0.0066; t-cell:23.5 vs-18.5,p = 0.041)。ARID2突变患者的生存率提高了。 (HR:1.22(95%CI 1.0-1.5),p = 0.022)。与ARID -WT相比,使用抗PD-1治疗的ARID2突变没有观察到其他OS益处。干旱突变患者的黑色素瘤患者表现出与ICI反应相关的标志物的较高患病率,包括TMB-H和免疫相关的特征。我们的数据还表明,与抗PD1治疗无关,ARID2突变患者的生存结果改善。
保护功能 相过流 50/51 方向相过流 67 接地故障过流 50N/51N 方向接地故障 67N 瞬时接地故障 67NI 电容器组不平衡 51C 断线 46 I2/I1 冷负荷启动 H2 检测 68H2 H5 检测 68H5 冷负荷启动 59 断路器故障 50BF 开关闭合至故障 (SOTF) 方向有功功率不足 37P 故障定位器 21FL 重合闸 79 相欠流 37 启动时间过长,转子堵转 48/51LR 电机重启抑制 66 电容器过压 59C 负序过流 46 开关闭合至故障 (SOTF) 50/51 过压 59 欠压 27 正序欠压 27P 接地故障过压 59N 欠频 81/81N 频率变化率 81R同步检查 25 闭锁继电器 86 CT 监控 60 VT 监控 60 可编程阶段 99 8 可编程曲线
摘要:集体感知服务(CPS)允许连接的车辆通过与其他车辆和基础设施共享有关对象的动态状态的信息来获得其环境的更全面的了解。通过车载传感器检测到的对象通过车辆到车辆(V2V)或车辆对基础设施(V2I)通信共享。但是,V2V通信的范围有限,可以部署路侧单元(RSU)以增强范围并减轻V2V信号传播的负面影响。我们通过RSU增强了车辆网络,以汇总和向前的集体感知消息(CPM)从相邻车辆中收到的,从而改善了整体环境感知和易受伤害的道路使用者(VRUS)的对。根据ETSI ITS-G5标准,我们的仿真结果证明了CPS在城市交叉点方案中的有效性,显示了其他V2I通信和RSU对VRUS车辆感知的部署的积极影响。添加RSU会导致VRU感知的显着改善,而网络通道上的数据包丢失则适度增加。
电阻负载上的最大开关电流输出R1a,R1b,R1C,COS PHI = 1:3 A处,250 V AC中继a,电阻载荷上的R1B,R1B,R1C,电阻载荷,Cos Phi = 1:3 a在30 V dc dc dc dc Relay r1a,r1b,r1c,r2a,r2a in in r2 a in in r2 a in r2 a in-r2 in-r2 in-r2 in-r2 = 0. 4 250 V AC Relay output R1A, R1B, R1C, R2A, R2C on inductive load, cos phi = 0.4 an- d L/R = 7 ms: 2 A at 30 V DC Relay output R2A, R2C on resistive load, cos phi = 1: 5 A at 250 V AC Relay output R2A, R2C on resistive load, cos phi = 1: 5 A at 30 V DC电阻负载上的最大开关电流输出R1a,R1b,R1C,COS PHI = 1:3 A处,250 V AC中继a,电阻载荷上的R1B,R1B,R1C,电阻载荷,Cos Phi = 1:3 a在30 V dc dc dc dc Relay r1a,r1b,r1c,r2a,r2a in in r2 a in in r2 a in r2 a in-r2 in-r2 in-r2 in-r2 = 0. 4 250 V AC Relay output R1A, R1B, R1C, R2A, R2C on inductive load, cos phi = 0.4 an- d L/R = 7 ms: 2 A at 30 V DC Relay output R2A, R2C on resistive load, cos phi = 1: 5 A at 250 V AC Relay output R2A, R2C on resistive load, cos phi = 1: 5 A at 30 V DC