TI资格测试是一种降低风险的过程,该过程旨在确保客户应用程序中的设备寿命。晶圆制造过程和包装级可靠性以多种方式评估,其中可能包括加速的环境测试条件,随后脱离了实际使用条件。评估设备的可制造性,以验证强大的组装流量并确保向客户供应的连续性。ti增强产品具有针对联合电子设备工程委员会(JEDEC)标准和程序的行业标准测试方法的资格。Texas Instruments增强产品符合Geia-STD-0002-1航空航天合格的电子组件。
本文报告了两项 AlGaN / GaN 高电子迁移率晶体管 (AlGaN / GaN HEMT) 技术(器件“A”和器件“B”)的可靠性研究。对雷达应用的实际工作条件下承受应力的器件进行了故障分析研究。这些器件经过脉冲射频长期老化测试,11000 小时后射频和直流性能下降(漏极电流和射频输出功率下降、夹断偏移、跨导最大值下降、跨导横向平移以及栅极滞后和漏极滞后增加)。热电子效应被认为是钝化层或 GaN 层中观察到的退化和捕获现象的根源。光子发射显微镜 (PEM)、光束诱导电阻变化 (OBIRCH)、电子束诱导电流 (EBIC) 测量与这一假设一致。这三种技术揭示了沿栅极指状物的非均匀响应和不均匀分布,此外,在漏极侧或源极侧的栅极边缘上存在一些局部斑点。对这些斑点进行光谱 PEM 分析可识别出可能与位错或杂质等晶体缺陷有关的原生缺陷。对 AlGaN / GaN HEMT 的两种技术进行的原子探针断层扫描 (APT) 分析支持了这一假设。APT 结果显示存在一些化学杂质,如碳和氧。这些杂质在器件“A”中的浓度相对较高,这可以解释与器件“B”相比,该器件的栅极滞后和漏极滞后水平较高。
1。Zwart SR,Kloeris VL,Perchonok MH,Braby L,Smith SM。在ISS上长期太空飞行后,从太空食品系统中对食品中的养分稳定性进行评估。J食品科学。2009 2。Bionutrients-1:开发长期持续任务的按需营养生产系统Natalie Ball,Hiromi Kagawa,Aditya Hindupur,Kevin Sims。ICES-2020- 119 3。 Hauserman,M.R.,Ferraro,M.J。,Carroll,R.K。等。 通过多摩卡数据分析检测到的太空飞行期间,金黄色葡萄球菌的群体传感和生理学改变了。 NPJ微重力。 2024 4。 Wilson JW,Ott CM,HönerZuBentrup K,Ramamurthy R等。 太空飞行改变了细菌基因的表达和毒力,并揭示了全球调节剂HFQ的作用。 Proc Natl Acad Sci U S A. 2007 5。 Overbey,例如Saravia-Butler AM,Zhang Z,Rathi KS等。 NASA Genelab RNA-Seq共识管道:短阅读RNA-Seq数据的标准化处理。 Iscience。 2021ICES-2020- 119 3。Hauserman,M.R.,Ferraro,M.J。,Carroll,R.K。等。 通过多摩卡数据分析检测到的太空飞行期间,金黄色葡萄球菌的群体传感和生理学改变了。 NPJ微重力。 2024 4。 Wilson JW,Ott CM,HönerZuBentrup K,Ramamurthy R等。 太空飞行改变了细菌基因的表达和毒力,并揭示了全球调节剂HFQ的作用。 Proc Natl Acad Sci U S A. 2007 5。 Overbey,例如Saravia-Butler AM,Zhang Z,Rathi KS等。 NASA Genelab RNA-Seq共识管道:短阅读RNA-Seq数据的标准化处理。 Iscience。 2021Hauserman,M.R.,Ferraro,M.J。,Carroll,R.K。等。通过多摩卡数据分析检测到的太空飞行期间,金黄色葡萄球菌的群体传感和生理学改变了。NPJ微重力。2024 4。Wilson JW,Ott CM,HönerZuBentrup K,Ramamurthy R等。 太空飞行改变了细菌基因的表达和毒力,并揭示了全球调节剂HFQ的作用。 Proc Natl Acad Sci U S A. 2007 5。 Overbey,例如Saravia-Butler AM,Zhang Z,Rathi KS等。 NASA Genelab RNA-Seq共识管道:短阅读RNA-Seq数据的标准化处理。 Iscience。 2021Wilson JW,Ott CM,HönerZuBentrup K,Ramamurthy R等。太空飞行改变了细菌基因的表达和毒力,并揭示了全球调节剂HFQ的作用。Proc Natl Acad Sci U S A.2007 5。Overbey,例如Saravia-Butler AM,Zhang Z,Rathi KS等。NASA Genelab RNA-Seq共识管道:短阅读RNA-Seq数据的标准化处理。Iscience。2021
抽象完全自动驾驶汽车(AVS)继续引起巨大的全球兴趣,但预测它们何时将安全,广泛地进行辩论。本文综合了两种截然不同的研究传统 - 计算复杂性和算法的约束与可靠性增长建模和现实世界测试 - 构成了一个集成的定量时间表,以实现未来的AV部署。我们提出了一个数学框架,该框架统一了NP-固有的多代理路径计划,高性能计算(HPC)预测以及广泛的crow-amsaa可靠性增长计算,操作性设计域(奇数)变化,严重性,严重性和部分限制性范围内的分解。通过特定类别的案例研究(例如,消费者汽车,机器人税,高速货运,工业和国防应用),我们展示了如何将HPC LIM局限性,安全性演示要求,生产/监管障碍以及Par-Allel/serial测试策略组合在一起,可以通过级别的5级部署来推出几个Decadess Universal Lovely forvive forvive forvely Levelmose forviens decadess decadess。相反,更受限制的赔率(例如围栏的工业站点或专门的国防行动)可能会在接近中间的任期内参见自治权达到商业生存能力。我们的发现表明,尽管有针对性的域可以更快地实现自动化服务,但处理每个环境的广泛无人驾驶车辆远离造成的环境。因此,本文提供了一个独特而严格的观点,即为什么AV时间表远远超出了短期乐观的范围,强调了复杂和可靠性的每个维度如何施加自己的多年延迟。通过量化这些约束并探索潜在的加速器(例如,高级AI硬件,基础架构上级),我们为研究人员,决策者和行业利益相关者提供了结构化的基准,以更准确地绘制他们在自动驾驶汽车技术方面的期望和投资。
摘要 不同的研究报告了 Vircator 的性能,结果表明模拟和测量的输出峰值功率和辐射频率之间存在很大差异。应用一次一个变量的方法的研究很少。进行全面分析需要在大量实验(模拟或测量)中应用统计方法,这是一个挑战,因为模拟 Vircator 需要大量的计算时间。最近,有人提出了一种替代模型来大幅缩短计算时间。在本文中,我们建议评估 Vircator 的性能变化,同时考虑机械制造公差以及脉冲电源的变化。分析是通过广为传播的随机方法(经典蒙特卡罗、谱技术)和其他灵敏度分析方法进行的。
BES 网络资产项目 2014-02 BCA 2015 年 2 月 12 日 2016 年 1 月 21 日 2016 年 7 月 1 日 网络资产如果不可用、性能下降或被滥用,则在其需要运行、误操作或不运行的 15 分钟内会对一个或多个设施、系统或设备产生不利影响,如果在需要时被破坏、性能下降或以其他方式不可用,则会影响大型电力系统的可靠运行。在确定不利影响时,不应考虑受影响设施、系统和设备的冗余。每个 BES 网络资产都包含在一个或多个 BES 网络系统中。BES 网络系统项目 2008-06 2012 年 11 月 26 日 2013 年 11 月 22 日 2016 年 7 月 1 日 一个或多个 BES 网络资产由负责实体按逻辑分组,用于为功能实体执行一个或多个可靠性任务。BES 网络系统信息
基础设施更换和硬化都需要可靠性投资。我们在2024年与公司,监管机构和政策制定者的会议以及2025年的全球能源,公用事业和清洁技术会议上表明,人们对网格/水基础设施硬化和现代化的需求增加了认识。这是由于近年来投资不足以及夏季和冬季之间的预期温度范围更高。我们认为,政策制定者和监管机构都希望减少停电的风险,并因此将提高可靠性和弹性的措施确定优先级。在我们看来,这种多种利益相关者将重点放在可靠性上,以及Big Tech对低碳技术的支持应为暴露的股票提供反向风雨,在我们看来,适应性,脱碳和AI/数据中心功率的需求也表现出强大的金融基础。
第一部分以可靠性建模为中心,特别是故障树(FT)模型的自动推断。传统上,基于图形的模型(例如FTS)是通过系统专家和FT Mod-Ellers之间的迭代协作手动构建的。但是,这种手动方法容易出现人为错误,可能导致模型不完整。随着数据可用性的增加,试图自动化此过程的方法论,发现模式并减少对手动干预的依赖性已获得显着相关性。因此,在本文的第一部分中,我们关注如何以强大而可扩展的方式从失败数据集中获取有效而紧凑的故障树模型。
可靠性是指系统在运行过程中的质量、对要求的满足以及最终产品的质量生产。磨浆机也是一种工业设备,用于改善原材料的性能,并为最终产品的生产做好准备。在机械纸浆生产行业中,磨浆机在产品生产中的作用及其对产品质量和总成本的影响非常重要。本文介绍了机械磨浆机的结构,研究了决定和提高可靠性的主要部件,并计算了它们的可靠性值。根据计算,该设备最有影响力的元件是机械密封,在选择和监控其状态时应比其他元件更加小心,以达到目标的可靠性。
关于本次评估 NERC 是一家非营利性国际监管机构,其使命是确保北美 BPS 的可靠性。NERC 制定并执行可靠性标准;每年评估季节性和长期可靠性;通过系统意识监控 BPS;并教育、培训和认证行业人员。NERC 的职责范围横跨美国大陆、加拿大和墨西哥下加利福尼亚州北部。NERC 是北美的 ERO,受美国联邦能源管理委员会 (FERC,也称为委员会) 和加拿大政府机构的监督。NERC 的管辖范围包括北美 BPS 的用户、所有者和运营商,为超过 3.34 亿人提供服务。 FERC 法规第 39.11(b) 节规定,“电力可靠性组织应每年或根据委员会的要求更频繁地对北美大容量电力系统的充分性进行评估,并向委员会、能源部长、各区域实体和各区域咨询机构报告评估结果。” 制定过程 该评估基于 NERC 从六个区域实体(参见前言)收集的数据和叙述信息(参见区域评估仪表板),以独立评估北美 BPS 的长期可靠性,同时确定趋势、新出现的问题以及未来 10 年评估期内的潜在风险。在 NERC 可靠性和安全技术委员会 (RSTC) 的指导下,可靠性评估小组委员会 (RAS) 通过全面透明的同行评审流程支持制定该评估,该流程利用系统规划人员、RAS 成员、NERC 员工和其他主题专家的知识和经验;这一同行评审过程确保了所有数据和信息的准确性和完整性。RSTC 也审查了这项评估,NERC 董事会随后接受了这项评估并认可了主要发现。NERC 每年根据 ERO 的程序规则 1 和《联邦法规》第 18 章第 39.11 节 2 制定长期可靠性评估 (LTRA);3 这也是《联邦电力法》第 215(g) 条的要求,该条指示 NERC 对北美 BPS 进行定期评估。4