每年将在不久的将来生产数十亿个一次性薄膜电子产品,用于智能包装,物联网和可穿戴生物监测贴片。在这些情况下,传统的刚性电池在形式和人体工程学方面也不是最佳的,也不是生态方面的。迫切需要使用薄,可拉伸,弹性且可回收的新型储能设备。在此,提出了一种新型的材料和制造技术结构,允许完全3D打印的软性薄膜电池对机械应变有弹性,如果可修复,可充电,可回收,并且可以在其寿命结束时回收。通过利用数字可打印的超易碎液态金属电流收集器和新型的镀具有镀碳碳阳极电极,AG 2 O-Gallium电池可快速打印并根据应用程序定制。通过优化镀具有耐碳碳复合材料的性能,获得了26.37 mAh cm-2的创纪录的面积容量,在100%应变时10个周期后改善了10.32 mAh cm-2,而前所未有的最大应变耐受性为≈200%。部分损坏的电池可以治愈自己。通过创新的冷蒸气刺激来治愈严重损坏的电池。一个用印刷传感器来监控心脏的数字印刷,泰勒制造的电池健康监控贴片的示例,并证明了呼吸。
关键的教学障碍和电动电动电池设计的障碍和机会进行维修和重新利用:●全球南方的非正式部门维修工人和收到电子废物的国家都有宝贵的经验教训可以共享,面对倾倒炮弹和电子垃圾的严重健康和环境伤害,并且必须咨询有效的直接到达统一的殖民地统治和预防统一的殖民主义,并必须征询有效的殖民地。●结构性电池设计选择,例如特斯拉首选的牢房对包装结构,被反复标记为一个主要的障碍,以防止维修和重新利用,而模块化的电池设计更加维修和重新使用友好。●经常将专有的软件和技术作为修复的主要障碍 - 从定制的插座和螺丝到专有的说明手册,诊断工具和备件,到不可靠的车载电池管理系统和不可访问的电池状态健康信息 - 列表不断增长!扩大电池护照计划的强制性范围以包括此类主题只是一个机会来帮助减少这一障碍。●访问信息,尤其是可靠的健康状况测量结果,表明电池的降解水平和剩余能力 - 非常具有挑战性。第三方对可靠的电池健康状况的公平且公平的访问对于重新利用至关重要。企业家正在设计低成本和快速的方法,以可靠地确定电池状况的状态,并且需要更多的立法和政策支持,以强大地访问该信息。●联盟建设是提高通过权利的法律和其他与废物不公正行动作斗争所必需的支持的关键。
本工作采用了一种创新技术——电弧增材制造 (WAAM),这是一种定向能量沉积技术,用于裂纹钢部件的疲劳强化。在高周疲劳载荷条件下测试了不同的带有中心裂纹的钢板,包括参考板、用 WAAM 修复的具有沉积轮廓的钢板以及用 WAAM 修复并随后进行加工以降低应力集中系数的钢板。进行了相应的有限元模拟,以更好地理解 WAAM 修复的机理。参考板上现有的中心裂纹在 94 万次循环后扩展并导致断裂,而两块 WAAM 修复板中的中心裂纹并未扩展,这是由于净横截面积增加以及沉积过程引起的压应力。然而,在第二块钢板中,由于局部应力集中,在 WAAM 轮廓根部出现了新的裂纹,疲劳寿命达到了 220 万次循环(是参考板的 2.3 倍)。另一方面,第三块钢板由于加工轮廓光滑,经受了 900 多万次疲劳循环,没有出现明显的退化。这项研究的结果表明,WAAM 修复技术在解决钢结构疲劳损伤方面具有巨大潜力。
简介根据欧洲心脏病学会最新的慢性冠状动脉综合征指南,冠状动脉疾病 (CAD) 被定义为具有稳定性心绞痛症状和/或呼吸困难的 CAD 记录。1 众所周知,DNA 损伤是该疾病发病的原因之一。通常,这些损伤以单碱基突变、链断裂、碱基缺失或碱基修饰的形式出现。2 DNA 修复机制在维持基因组完整性方面起着非常重要的作用。不同的 DNA 修复机制用于修复哺乳动物细胞中不同的 DNA 损伤。BRCA1 是乳腺癌和卵巢癌的关键易感基因。3 它由几个对维持基因组稳定性至关重要的结构域组成,例如 DNA 修复、DNA 损伤信号传导、染色质重塑、细胞周期检查点的调节、蛋白质泛素化、转录调控和细胞凋亡。 BRCA1 蛋白通过调节同源重组 (HR),在 DNA 双链断裂修复过程中发挥着至关重要的作用。4
神经退行性疾病(NDDS)构成了重大的医学挑战,导致神经元丧失和功能下降。当前治疗主要关注症状管理,而不是解决潜在的病理。干细胞疗法和神经假体已成为减轻NDD的两种有前途但独特的方法。干细胞疗法旨在再生或修复受损的神经组织,而神经假体,包括深脑刺激(DBS)和脑部计算机界面(BCIS),调节大脑活动和恢复功能降低。本文探讨了结合这些疗法以解决细胞再生和功能障碍的潜在协同作用。通过将干细胞疗法的再生能力与神经假想增强神经交流的能力相结合,这种方法可以为治疗NDD提供更全面的策略。然而,仍然存在重大挑战,包括确保干细胞表面和整合,优化神经假体界面以及解决道德考虑。虽然临床前和早期临床研究显示出令人鼓舞的结果,但对于建立这种联合治疗模型的长期疗效和安全性是必要的。推进这种跨学科方法的信用定义了针对神经变性疾病的治疗范例并改善患者的预后。
摘要细胞移植显示了修复受伤的神经系统的希望,包括脊髓损伤(SCI)和周围神经损伤(PNI)。但是,在阻碍这些疗法从长凳到床边移动的疗法时仍然存在问题,方法需要优化。三维(3D)细胞培养系统被建议改善结果,弥合体外环境和体内环境之间的差距。在这种构造中,允许细胞相互相互作用,并像在体内一样与3D中的细胞外基质(ECM)相互作用。3D构建体中的移植细胞而不是悬浮液中的移植细胞被认为可以促进细胞存活并维持重要的细胞行为。这样的关键行为是细胞迁移到伤害部位内外。因此,了解和控制3D培养细胞的迁移能力对于开发更好的移植技术至关重要。ECM重塑会影响许多细胞功能,包括细胞迁移和基质金属蛋白酶(MMP)是ECM调节的重要酶。在这里,我们讨论了调节MMP以控制3D培养系统中细胞迁移的想法,这可以提高3D移植的细胞的治疗潜力。
Axolotl一词来自Nahuatl,Nahuatl是墨西哥人的语言(阿兹台克人在构建Tenochtitlán之后的名字),它具有几种含义。它是由ATL单词(意为水和Xólotl)构造的,可以翻译为玩具,双胞胎或怪物:“'Water Toy','水上怪物','Water Twin'[…],但很明显,它引用了Xolotl神Xolotl”(Bartra,83-84)。在墨西哥的宇宙中,Xolotl - 对这种实践的怀疑 - 拒绝了其他神灵牺牲自己的要求,并试图逃脱他的有序死亡。这反映了Axolotls避免破坏的能力。通过好奇的基因组能力,这些两栖动物可以再生其四肢,组织和细胞[^1]。如果他们的四肢之一丢失,他们可以在几周内将其发展回。由于此功能,墨西哥人还认为Xolotl是负责在灭绝后重现人类的人,这并不奇怪。
在有丝分裂期间,染色体发生广泛的结构变化,导致形成紧凑的cy骨体并终止大部分DNA依赖性代谢活性。因此,不会预期会干扰诸如DNA复制和转录等过程的DNA率对有丝分裂的基因组稳定性构成重大威胁。但是,有一些例外。DNA复制和修复中间介导,从物理上互连姐妹染色单体会危及忠实的染色体染色体,并且需要在后期开始之前解决。此外,二含染色体可以形成染色质桥,并诱导融合融合 - 破裂周期,对基因组稳定性产生可怕的后果。最后,在有丝分裂的早期逃脱G2/M DNA损伤检查点或出现的染色体断裂可能会导致落后的Acentric DNA片段在细胞退出有丝分裂时会误差并形成微核。染色质桥和微核都是突变级联反应的潜在来源,可导致巨大的杂质不稳定性,并显着促进基因组复杂性。在这里,我们回顾了我们对染色体桥和微核的起源和后果的最新进展以及细胞抑制它们的机制。
可以说,构成飞机结构的组件属于三个主要类别之一:可消耗,可修复和旋转。可消耗性的零件是MRO无法控制的零件。需要在需要时更换,并且从来没有任何修理问题的问题。可修复的零件和可旋转零件共享许多共同点,主要是可以在适当的安全性和成本效率方面对它们进行修复。但是,旋转型与可修复的组件不同,因为它们不仅包含关键序列号,而且要在严格的预定时间间隔内进行检查和维护。也像可修复的零件一样,涉及旋转的最大挑战之一就是知道何时可以修复零件,以及何时必须更换零件。
。CC-BY 4.0 国际许可(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2020 年 2 月 24 日发布。;https://doi.org/10.1101/2020.02.24.962423 doi:bioRxiv 预印本