摘要 — 在远距离节点之间分配纠缠是量子网络中的一项基本任务。 为了完成这项任务,引入了量子中继器来执行纠缠交换。 本文提出了一种远程纠缠分布 (RED) 协议的设计,以最大化纠缠分布率 (EDR)。 我们引入了节点的概念,表示网络中纠缠的量子比特 (qubit) 对。 这一概念使我们能够基于一些线性规划问题的解来设计最优 RED 协议。 此外,我们研究了同质中继链中的 RED,它是许多量子网络的基石。 具体而言,我们以封闭形式确定了同质中继链的最大 EDR。 我们的研究结果使得能够使用有噪声的中尺度量子 (NISQ) 技术分配长距离纠缠,并为一般量子网络的设计和实施提供了见解。
NPN 硅平面外延晶体管,适用于 GHz 范围内的宽带应用,例如模拟和数字蜂窝电话、无绳电话(CT1、CT2、DECT 等)、雷达探测器、卫星电视调谐器 (SATV)、MATV/CATV 放大器和光纤系统中的中继放大器。
•(PC,移动,终端,服务器,CCTV等)IT资产控制•网络开关,有线 /无线开关控件,例如物联网中继器,Wi-Fi AP等•基于无代理的IP / MAC资产控制•通过Windows,MAC,OS,Linux•未经授权的AP检测和访问障碍< / div> < / div>通过各种OS-特定于特定的代理进行控制< / div>
未来的量子网络将具有配备多个量子存储器的节点,从而允许多路复用 14 和纠缠蒸馏策略,以提高交付率并减少端到端 15 纠缠分发的等待时间。在这项工作中,我们引入了用于多路复用量子中继器 16 链的准局部策略。在完全局部策略中,节点仅根据对自身状态的了解做出决策。在我们的 17 准局部策略中,节点增加了对中继器链状态的了解,但不一定是 18 完整的全局知识。我们的策略利用了这样的观察结果:对于节点必须做出的大多数决策 19,它们只需要掌握有关它们所属链的连接区域的信息,而不是整个 20 链。通过这种方式,我们不仅获得了优于局部策略的性能,而且还降低了全局知识策略固有的经典 21 通信 (CC) 成本。我们的策略在实际相关的参数范围内也优于众所周知的、被广泛研究的嵌套净化和加倍交换策略。我们还仔细研究了纠缠蒸馏的作用。通过分析和数值结果,我们确定了蒸馏有意义且有用的参数范围。在这些范围内,我们还解决了以下问题:“我们应该先蒸馏再交换,还是反之亦然?”最后,为了提供进一步的实用指导,我们提出了一种基于多路复用的中继器链的实验实现,并通过实验演示了关键元素,即高维双光子频率梳。然后,我们通过对两个具体内存平台(即稀土离子和金刚石空位)的模拟结果,评估了我们基于多路复用的策略在这种真实网络中的预期性能。
注意 - 这些值基于这样的假设:衰减/频率特性在 280 公里长的均匀部分末端不显示任何超过 ± 1 dNp(约 ± 1 dB)的波纹。在 60 kHz 时应用了宽松条件,因为在低频下可能难以获得相对于电缆阻抗足够小的中继器输入和输出阻抗的反射系数。
Vertex Standard 编程软件允许用户通过设置频率、功能和参数来定制他们的 Vertex 无线电。该软件与 Windows 操作系统兼容,并允许用户:* 设置频道频率和隐私代码* 为无线电上的可编程键分配功能* 配置超时计时器和其他功能的延迟时间* 保存设置并使用相同配置对多个无线电进行编程注意:FIF-10 电缆已停产并由 FIF-12 取代。在线指南可帮助用户确定其特定无线电型号所需的 Vertex Standard 编程软件和必要的编程电缆。用户还可以获得所有 Vertex Land Mobile 无线电的可下载软件副本。必须注意的是,操作某些频率需要 FCC 许可证,如果发生未经许可的传输,可能会受到严厉处罚。YAESU 提供在订购无线电时免费获得许可证的帮助。如果只有 12 至 16 伏直流电源可用,则可选的 E-DC-5B 或 E-DC-6 直流适配器可用于为电池充电。 FNB-V57 高容量电池不能使用 NC-72 充电;相反,请使用 CD-16。为了抵抗互调型干扰,请在通向基站的同轴线上安装合适的 144-148 MHz 带通滤波器。如果您使用的是“B”版本(在欧洲),请按 T-CALL 开关以发送 1750 Hz 音调,以访问需要它的中继器。必要时,按 [VFO (PRI)] 按钮选择 VFO 模式。VX-150 有两个 VFO,分别标记为“A”和“B”,可用于本手册中描述的所有程序。ARS 功能可在调谐到标准中继器子带时提供中继器发射频率的偏移。启用后,将显示一个小的“-”或“+”,表示中继器偏移处于活动状态,关闭即按即说开关会将显示更改为(偏移的)发射频率。可以锁定 VX-150 的各个按键和开关,以防止意外更改频率或无意传输。接收省电模式使无线电设备在一段时间内处于休眠状态,然后定期将其唤醒以检查活动。如果有人在该频道上讲话,VX-150 将保持“活动”模式,然后恢复其“休眠”(正常)省电模式操作。当上次收到的信号非常强时,发射省电模式会自动降低功率输出水平。使用发射省电模式,自动选择低功率操作可显著节省电池消耗。VX-150 能够测量当前电池电压。按 [F] 键,然后按 [0 (SET)] 键进入设置模式。旋转 DIAL 选择菜单项 #37(“电池电量”)。按 [VFO (PRI)] 按钮可随时更改 VFO。只要调谐到标准中继器子带,ARS 就会提供中继器偏移发射频率。启用后,将显示一个小的“-”或“+”,表示中继器偏移处于活动状态。可能的锁定组合为: - 仅锁定前面板按键... - 参见第 18 页。VX-150 的一个重要功能是其接收省电模式,该模式可“使无线电设备休眠”一段时间,并定期“唤醒”以检查活动。如果有人在频道上讲话,VX-150 将保持“活动”模式,然后恢复其“休眠”...(正常)省电操作。VX-150 还包括一个有用的发射省电模式,当最后收到的信号非常强时,它将自动降低功率输出水平。使用发射省电模式,自动选择低功耗操作可显著节省电池消耗。VX-150 能够测量当前电池电压。按[F]键,然后按[0 (SET)]键进入设置模式。旋转 DIAL 选择菜单项 #37(“... 编程默认 VX-150 设置模式已在工厂分配给 [7 (P1)] 和 [8 (P2)] 键。如果要为键定义另一种设置模式,用户可以更改这些设置。完成选择后,按 PTT 键保存新设置并退出正常操作。 VX-150 有两个 VFO,分别标记为“A”和“B”,其中任何一个都可以用于本手册中描述的所有程序。您可以随时使用 [VFO (PRI)] 按钮更改 VFO。 基本操作 VX-150 中的 ARS(自动中继器异频)功能可在您调谐到标准中继器子带时提供中继器异频发射频率(见下图)。启用后,显示屏左上角将显示一个小的“-”或“+”,表示中继器异频处于活动状态,并关闭即按即说开关将显示更改为(移位的)发射频率。为了防止意外的频率更改或无意的发射,VX-150 的各个按键和开关可能被锁定。可能的锁定组合是:仅前面板按键被锁定... 请参阅第 18 页。VX-150 无线电允许各种存储信道设置,包括主信道和五组频带边缘存储器。要调用特定的存储信道,请在选择它后短暂按下 MR(跳过)键。在 CTCSS 解码或 DCS 操作期间,可以通过设置 VX-150 以在来电时用铃声提醒您来激活“铃声”。无线电的扫描功能使您能够扫描存储信道、整个操作频带或该频带的一部分。它会在遇到信号时停止,允许您与该频率上的电台通话。在扫描之前,选择扫描仪在信号上停止后应如何恢复扫描。此外,VX-150 还具有在扫描仪在信号上停止时自动点亮 LCD 灯的功能。可以按 [F] 键,然后按 [0 (SET)] 键进入设置模式,然后选择所需设置,以禁用扫描灯。该电台的扫描功能还包括双通道扫描功能,让您可以在 VFO 或记忆信道上操作,同时定期检查用户可选择的优先信道是否活动。要激活此功能,请按 [F] 键,然后按住 [VFO (PRI)] 键。此外,VX-150 的 16 键键盘提供 DTMF 操作,可轻松拨号以进行自动补丁或中继器控制。键盘包括数字,以及常用于中继器控制的音调。最后,无线电的 CW IDENTIFIER SETUP 允许您设置 CW ID 功能,方法是按 [F] 键启用此菜单项的更改,然后旋转 DIAL 选择所需的设置。操作年度 VX-150 分组 TNC 操作说明和重置 VX-150 无线电可用于分组操作,配有可选的 CT-44 麦克风适配器,可通过常用连接器或构建自定义电缆轻松连接到 TNC。便捷的“克隆”功能允许将内存和配置数据从一个收发器传输到另一个收发器,这在公共服务操作中很有用。要激活设置模式:按 [F] 键,然后按 [0 (SET)] 键,使用 DIAL 选择菜单项编号,然后根据需要进行调整。设置: * 设置模式选项:5/10/12.5/15/20/25/50 kHz * 默认值取决于对讲机版本 * 恢复功能:+ 可用值:5 秒/忙碌/保持 + 默认值:5 秒 * ARTS 轮询间隔:15 秒/25 秒(默认值:15 秒) * 键盘蜂鸣器:开/关(默认值:开) * 繁忙信道锁定:开/关(默认值:关) 其他设置: * 超时计时器:关/1 分钟/2.5 分钟/5 分钟/10 分钟(默认值:关) * CW 标识符:编程并激活以用于 ARTS 操作 * 智能搜索:按照第 23 页的详细说明激活该功能 * 电源电压指示器:按 [F] 键,然后按 PTT 键退出正常操作 注意: * 未经 Yaesu Musen 批准的更改或修改可能会使操作此设备的授权失效。 * 本设备符合 FCC 规则第 15 部分。要进行调整或设置特定音频频率:按住 F 键并将主拨盘转到所需设置。按 PTT 按钮保存。如果您需要设置 PL 音频,请在按下 F 键后快速按下 1/SQ TYP 键,然后旋转直到出现 TN ENC。接下来,按住 F 键,然后按下 2/CODE 键,并将拨盘调整到您喜欢的音频频率。要将其存储在内存信道中:按照设置频率及其设置的步骤操作,然后按住 F 键一秒钟,然后旋转拨盘以选择内存插槽号并保存。要访问存储的频率或扫描这些频率,请按 MR/SKIP 键进入 MR 模式。选择所需的存储频道或在 MR 模式下短暂按住其中一个 MHz 键以开始扫描已保存的频道。按 PTT 停止扫描,然后使用 F 键,然后按 MR/SKIP 键暂时跳过不需要的频道。要取消跳过频道,请重复此过程。
摘要:近年来,量子信息的理论和实验得到了广泛的研究,量子通信的可行性也得到了证实。尽管基础技术尚未成熟,但量子互联网的研究仍需进一步深入。要实现量子互联网,迫切需要开发一种描述量子节点如何连接组成网络以及协议功能如何垂直组合的体系结构。本文提出了一种基于簇的结构设计来描述量子节点如何互连,以及该结构如何提高量子比特传输的性能并降低网络复杂度。提出了量子局域网(QLAN)的概念作为量子互联网的重要组成部分。此外,每个量子中继器链接到相邻的中继器以形成核心网络,多个 QLAN 通过核心网络连接。核心网络可以根据所需的服务需求分组为不同的分层量子中继器网络。为了实现互操作性和快速原型开发,我们在量子互联网的设计中采用了当前互联网的 OSI 分层模型的思想。最后详细阐述了量子节点的组成以及端到端通信的实现。
各种高精度仪器,用于在大量应用中可靠地测量、计量、转移、分配和注射液体。手动和电子微量移液器、单通道和多通道移液器、重复式移液器、分配器、手动和电子移液器控制器、可重复使用的注射器及其配件构成了该计划的核心。每台精密仪器都有自己的序列号,并通过了严格的性能控制,并由单独的 QC 证书证明。
由于这些线索,研究人员的预感是,树突状接触位点的分子机械对于传输钙信号也必须很重要,而钙信号是细胞用于通信的。他们怀疑沿着树突的接触站点可能像电报机上的中继器一样:接收,放大和在长距离内传播信号。在神经元中,这可以解释在树突上的特定位点接收到的信号如何转移到数百微米的细胞体中。