Ca 2+ /钙调蛋白依赖性蛋白激酶II(CAMKII)多动症引起心律不齐,这是全球发病率和死亡率的主要来源。尽管在众多心脏病的临床前模型中,CAMKII抑制作用得到了证实,但CaMKII拮抗剂向人类的翻译被低效力,毒素性以及对认知对认知的不利影响而受到阻碍,这是由于Camkii在学习和记忆中的确定作用而引起的。为了应对这些挑战,我们询问是否有任何用于其他目的的临床认可的药物是有效的CAMKII抑制剂。为此,我们设计了改进的荧光记者Camkar(CAMKII活动记者),该报道具有较高的灵敏度,动力学和障碍性,用于高通量筛选。使用此工具,我们在表达组成型活性CAMKII的人类细胞中进行了药物重新利用的筛选(临床用途中的4475种化合物)。这产生了具有临床相关效力的五种先前未识别的CAMKII抑制剂:ruxolitinib,bariticinib,Silmitasertib,Crenolanib和Abemaciclib。我们发现,口服可生物可利用和美国食品药物管理局的鲁唑替尼批准了药物,在培养的心肌细胞和小鼠中抑制了CAMKII。r氧替尼废除了小鼠的心律失常和CAMKI-CRANDER DARNTHMIAS的患者衍生模型。体内10分钟的预处理足以防止儿童心脏骤停的先天性来源,并营救房颤,这是最常见的临床心律失常。在心脏保护剂量下,r舒尔特氏治疗的小鼠在既定的认知测定中没有显示出任何不利影响。我们的结果支持对鲁索替尼作为心脏适应症的潜在治疗方法的进一步临床研究。
基因调控是多细胞生物的重要过程,但识别功能性调控序列和机制可能具有挑战性。在秀丽隐杆线虫中,正向遗传学可以识别破坏生理过程的内源性突变(“等位基因”),从而以无偏见的方式定义功能序列(Brenner 1974;Trent、Wood 和 Horvitz 1988;Desai 等人 1988;Barton、Schedl 和 Kimble 1987)。基于 CRISPR 的基因组编辑可用于测试内源序列的功能和生理作用(Dickinson 和 Goldstein 2016;Vicencio 和 Cerón 2021)。报告基因检测中对非编码 DNA 进行系统性测试(例如“报告基因抨击”)可以识别功能序列,但不能直接检查生理功能(Aamodt、Chung 和 McGhee 1991;Didiano 和 Hobert 2006;Boulin、Etchberger 和 Hobert 2006;Nance 和 Frøkjær-Jensen 2019)。
大规模并行报告基因检测 (MPRA) 是一种高通量方法,用于评估数千个候选顺式调控元件 (CRE) 的体外活性。在这些检测中,候选序列被克隆到由独特 DNA 序列标记的报告基因的上游或下游。然而,标签序列本身可能会影响报告基因的表达,并导致测量的顺式调控活性出现重大潜在偏差。在这里,我们提出了一种基于序列的方法来校正标签序列特异性效应,并表明我们的方法可以显著减少这种变异源并提高 MPRA 对功能性调控变体的识别。我们还表明我们的模型可以捕获与 mRNA 转录后调控相关的序列特征。因此,这种新方法不仅有助于提高 MPRA 实验中对调控信号的检测,而且还有助于设计更好的 MPRA 协议。
BrightNight 和 Cordelio Power 很高兴为皮纳尔县带来这个最先进的项目,该项目将清洁可再生太阳能发电与先进的电池存储技术相结合,即使在日落之后也能利用太阳能。该项目除了使用可再生资源产生清洁能源而无需在发电过程中使用水之外,还为皮纳尔县带来了许多直接好处。我们估计,全面完工的项目将为皮纳尔县带来超过 2000 万美元的商业地产税,同时通过支付给亚利桑那州土地局 (ASLD) 的资金为本州学校带来超过 6000 万美元的收益。该项目地理位置优越,将充分利用原本几乎肯定会闲置数十年的地产。此外,该项目将在施工期间创造数百个就业机会,并引发大量当地支出,并为当地经济带来二次效益。最后,该项目将有助于进一步提升皮纳尔县作为新兴和不断扩张的清洁能源经济的全国领导者的声誉,并与该县作为电动汽车制造和清洁能源发电及基础设施领导者的重要地位相辅相成。
北卡罗来纳州立大学,教堂山,27599,北卡罗来纳州,美国 8 9 *通讯地址 10 Christopher E. Nelson,博士 11 生物医学工程系 12 120 John A. White Jr. 工程大厅 13 阿肯色大学 14 费耶特维尔,阿肯色州 72701 15 479-575-2615 16 nelsonc@uark.edu 17 18 摘要 19 巨噬细胞是再生医学和癌症免疫疗法等各种应用治疗的有希望的目标。由于其可塑性,巨噬细胞可以在最小的环境变化下从非活化状态转变为活化状态。为了使巨噬细胞在各自的应用中有效,有必要筛选表型变化以阐明细胞对不同运载工具、疫苗、小分子和其他刺激的反应。我们基于 NF- κ B 的激活创建了一种灵敏且动态的高通量巨噬细胞筛选方法。对于该报告基因,我们将 mCherry 荧光基因置于炎症启动子的控制之下,该启动子会募集 NF- κ B 反应元件来促进巨噬细胞炎症反应期间的表达。我们根据巨噬细胞炎症反应的关键标志物(包括 TNF- α 细胞因子释放和炎症和非炎症细胞表面标志物的免疫染色)来表征炎症报告基因。利用炎症报告基因,我们还能够创建 LPS 剂量曲线来确定报告基因的动态范围,并通过对刺激与非刺激处理的报告细胞进行时间点分析来确定报告基因对刺激的敏感性。然后,我们使用报告细胞系来确定递送效率和对不同病毒和非病毒基因递送载体的炎症反应。这里开发的筛选技术 34 提供了一种动态、高通量筛选技术,用于确定 35 小鼠巨噬细胞对特定刺激的炎症反应,并深入了解小鼠 36 巨噬细胞对不同病毒和非病毒基因传递方法的炎症反应。 37 38 简介 39 巨噬细胞是吞噬细胞,负责防御外来入侵者并维持 40 所有器官和组织 1-3 的体内平衡。根据微环境,巨噬细胞会改变功能 41 以响应局部需要。巨噬细胞的可塑性导致形成异质性 42 巨噬细胞表型群以应对情况,无论是防御、维持还是在 43 激活状态之间转换。巨噬细胞作为肿瘤相关巨噬细胞 (TAMS) 在肿瘤和 44 体内再生过程发挥作用。对于许多癌症来说,巨噬细胞在肿瘤 45 微环境中丰富,TAMS 负责促进转移、免疫抑制和 46 促进侵袭和血管生成 4 。巨噬细胞还负责维持从最初的炎症到清除外来入侵者的愈合过程,募集必要的免疫细胞,以及在再生的最后阶段解决愈合过程 5–9 。 49 50 巨噬细胞由于其在活化 51 状态之间切换的能力,可以参与各种各样的活动。对巨噬细胞极化状态的理解在不断发展,在最基本的层面上 52 要么是经典的激活/炎症状态,要么是激活/抗炎状态。这些 53 状态也被描述为 M0(静息)、M1(炎症)和 M2(抗炎)。由于 54 它们的实用性,巨噬细胞已被用于许多不同的应用,从肿瘤学的细胞疗法到再生中局部环境的重新编程 10–16 。虽然巨噬细胞提供了 56
摘要 Prime editing 是一种最近开发的基于 CRISPR/Cas9 的基因工程工具,可用于在基因组中引入短插入、删除和替换。然而,Prime edit 的编辑率通常约为 10%–30%,效率却与其多功能性不符。本文,我们介绍了 Prime editor 活性报告基因 (PEAR),这是一种灵敏的荧光工具,可用于识别具有 Prime edit 活性的单个细胞。PEAR 没有背景荧光,可特异性指示 Prime edit 事件。它的设计为整个间隔序列的序列变异提供了无限的灵活性,使其特别适合于系统地研究影响 Prime edit 活性的序列特征。使用 PEAR 作为 Prime edit 的富集标记可使编辑群体增加高达 84%,从而显著提高 Prime edit 在基础研究和生物技术应用中的适用性。
(a) Prime Editor 活性报告基因 (PEAR) 的示意图。PEAR 的机制基于与 BEAR 相同的概念,并且包含相同的非活性剪接位点,如图 (a) 所示。PE 可以将“G-AC - AAGT”序列恢复为规范的“G-GT-AAGT”剪接位点。与 BEAR 不同的是,这里的 Prime 编辑发生在 DNA 的反义链上,因此,这种方法使我们能够将间隔序列定位在内含子内。这里,整个间隔的长度是可以自由调整的(显示为“N”-s)。剪接位点的改变的碱基显示为红色,编辑的碱基显示为蓝色。PAM 序列为深绿色,nCas9 为蓝色,融合的逆转录酶为橙色。
摘要:应用 CRISPR/Cas9 系统将荧光蛋白敲入人类多能干细胞 (hPSC) 中的内源性目的基因,有可能促进基于 hPSC 的疾病建模、药物筛选和移植疗法优化。为了评估荧光报告 hPSC 系用于高内涵筛选方法的能力,我们将 EGFP 靶向内源性 OCT4 基因座。产生的 hPSC–OCT4–EGFP 系表达与多能性标记物一致的 EGFP,并且可以适应多孔格式以进行高内涵筛选 (HCS) 活动。然而,在长期培养后,hPSC 暂时失去了 EGFP 表达。或者,通过将 EGFP 敲入 AAVS1 基因座,我们建立了稳定且一致的 EGFP 表达 hPSC–AAVS1–EGFP 系,该系在体外造血和神经分化期间保持 EGFP 表达。因此,hPSC–AAVS1–EGFP 衍生的感觉神经元可适应高内涵筛选平台,该平台可应用于高通量小分子筛选和药物发现活动。我们的观察结果与最近的发现一致,表明在 OCT4 基因座进行 CRISPR/Cas9 基因组编辑后会出现高频率的靶向复杂性。相反,我们证明 AAVS1 基因座是 hPSC 中的安全基因组位置,具有高基因表达,不会影响 hPSC 质量和分化。我们的研究结果表明,应应用 CRISPR/Cas9 整合的 AAVS1 系统来生成稳定的报告 hPSC 系以用于长期 HCS 方法,并且它们强调了仔细评估和选择应用的报告细胞系以用于 HCS 目的的重要性。