这是被接受出版的作者手稿,并且已经进行了完整的同行评审,但尚未通过复制,排版,分页和校对过程,这可能会导致此版本和记录版本之间的差异。请引用本文为doi:10.1111/acer.14260
或许,自第二次世界大战结束以来,我们经济体系中发生的最重要变化就是人们对联邦政府经济职能的看法发生了巨大转变。联邦政府现在被要求提升和保护所有群体的经济利益。我们的经济体系已经变成了一个由无数谈判集团组成的经济体,每个集团,无论规模多小,都学会了利用我们的体系来拖延或阻止任何不符合其自身利益的事情。在政治层面,党派纪律已经崩溃,我们选择和执行国家优先事项的能力也受到了削弱。我们拖延彼此的举措,似乎已经失去了许多达成有意义妥协的基本能力。这并不是说我们不能找到解决某些国家问题的方法。问题是,我们已经失去了采取任何可能让某些特定群体做出牺牲的解决方案的能力。
等效附加系数 (-) CAPPSUM[capp(i)*sapp(i)]/SUM[sapp(i)] 轴支架 : capp(i) 3.0 尾鳍 : capp(i) 1.5-2.0 支柱凸台 : capp)i) 3.0 船体凸台 : capp(i)= 2.0 轴 : capp(i) 2.0-4.0 稳定鳍 : capp(i) 2.8 圆顶 : capp(i)= 2.7 舭龙骨 : capp(i) 1.4 CAPP 球鼻艏横截面积 (m2) ABULB 球鼻艏横截面积质心至龙骨 (m) HBULB 艏侧推器隧道直径 (m) 艏侧推器数量 : DBTTDBTT*sqrt(N) ..DBTT 船首侧推器隧道阻力系数 船首圆柱形部分的推进器:CBTT-0.003 最差位置的推进器:CBTT-0.012 CBTT 浸没横梁面积(m2) AT 运行长度(m)(如果未知 SLR-0)。。SLR 水线入口角(如果。未知 0 度)--ALFA 螺旋桨数量:0-2,如果<>0 计算。W、T、RRE NPROP
许多染色质调节剂中的突变引起具有未知机制的神经发育障碍(NDDS)。可以理解,大多数研究都集中在染色质调节剂如何控制与脑发育和功能直接相关的基因表达(例如突触基因)。然而,一些NDD模型令人惊讶地显示出大脑种系基因的异位表达。这些种系基因通常仅在生殖细胞发育和性繁殖的原始生殖细胞,睾丸和卵巢中表达。已经报道了几种NDD中的这种异位种系基因的表达,包括免疫效率,cen-细胞不稳定性,面部异常综合征1; Kleefstra综合征1; MECP2重复综合征;和智力低下,X连锁的合成,Claes - Jensen型。负责的基因DNMT3B,G9A/GLP,MECP2和KDM5C,all aste asto contode condy consultation asto contode condiment。因此,这些突变可能导致种系基因的抑制,进而导致脑细胞的严重认同危机 - 可能会干扰诺尔脑发育。因此,种系基因的异位表达是定义该NDD子集的独特标志,进一步暗示了在大脑发育过程中种系基因沉默的重要性。种系基因表达对脑发育的功能影响仍然不确定。这篇观点文章探讨了这种明显的soma-dermlin转化如何出现,以及它如何通过基因组不稳定性和感官纤毛形成受损而干扰神经循环。此外,我们还讨论了如何在实验中测试这些假设,以最终确定异位种系转录物对染色质连接NDD的贡献。
2 研究动机和方法 9 2.1 简介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 研究方法 . ...
1博士学位科学作家,纽约,纽约。2分子生物学与生物物理学研究所,苏黎世,苏黎世,瑞士。3分子病理研究所(IMP),维也纳生物中心和维也纳医科大学,奥地利维也纳。 4蛋白质加工科,结构生物学中心,癌症研究中心,国家癌症研究所,美国国家癌症研究所,马里兰州弗雷德里克。 5比米分子科学系,魏兹曼科学学院,以色列rehovot。 6马萨诸塞州波士顿哈佛医学院的细胞生物学系。 7植物与微生物生物学和创新基因组学研究所,加利福尼亚大学,加利福尼亚州伯克利分校。 8哈佛医学院,马萨诸塞州波士顿的病理学系,杨百翰和妇女医院。 9,玛格丽特癌症中心,大学卫生网络和医学生物物理学系,多伦多大学多伦多大学,加拿大安大略省。 10 Max Perutz Labs,维也纳大学,维也纳生物中心(VBC),维也纳,奥地利。 11基础医学科学研究所和癌细胞重编程中心分子医学系,挪威奥斯陆奥斯陆大学临床医学研究所。 12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。 13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。 15 Casma Therapeutics,马萨诸塞州剑桥。 16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。3分子病理研究所(IMP),维也纳生物中心和维也纳医科大学,奥地利维也纳。4蛋白质加工科,结构生物学中心,癌症研究中心,国家癌症研究所,美国国家癌症研究所,马里兰州弗雷德里克。5比米分子科学系,魏兹曼科学学院,以色列rehovot。6马萨诸塞州波士顿哈佛医学院的细胞生物学系。7植物与微生物生物学和创新基因组学研究所,加利福尼亚大学,加利福尼亚州伯克利分校。8哈佛医学院,马萨诸塞州波士顿的病理学系,杨百翰和妇女医院。9,玛格丽特癌症中心,大学卫生网络和医学生物物理学系,多伦多大学多伦多大学,加拿大安大略省。10 Max Perutz Labs,维也纳大学,维也纳生物中心(VBC),维也纳,奥地利。11基础医学科学研究所和癌细胞重编程中心分子医学系,挪威奥斯陆奥斯陆大学临床医学研究所。 12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。 13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。 15 Casma Therapeutics,马萨诸塞州剑桥。 16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。11基础医学科学研究所和癌细胞重编程中心分子医学系,挪威奥斯陆奥斯陆大学临床医学研究所。12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。 13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。 15 Casma Therapeutics,马萨诸塞州剑桥。 16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。12挪威奥斯陆大学医院癌症研究所分子细胞生物学系。13 Sanford Burnham Prebys医学发现研究所,开发,衰老和再生计划,加利福尼亚州拉霍亚。15 Casma Therapeutics,马萨诸塞州剑桥。16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。16 Telethon遗传学和医学研究所(Tigem),意大利Pozzuoli。14国家生物巨星国家实验室,CAS CAS卓越生物大分子中心,生物物理学研究所,中国科学院和生命科学学院,中国中国科学院,北京大学,中国人民共和国。17分子和细胞生物学,加利福尼亚大学,伯克利分校,加利福尼亚州伯克利。18孟加拉大学 - 大学 - 大学 - 大学 - 膜生物学的国家主要实验室,纽约大学生命科学联合中心,生命科学学院,北京北京大学,北京大学。19分子机器和信号传导部,德国马丁斯·麦克斯·普朗克生物化学研究所。20 Amgen,Inc。,千橡树,加利福尼亚州。21医学院和布赫曼分子生命科学学院生物化学研究所II,德国法兰克福歌德大学。22马萨诸塞州波士顿哈佛医学院Blavatnik研究所的细胞生物学系。23分子肿瘤学和早期发现生物化学,加利福尼亚州南旧金山的Genentech,Inc。。24布里斯托尔·迈尔斯·索斯(Bristol Myers Squibb),加利福尼亚州布里斯班。25弗里德里希·米舍(Friedrich Miescher)生物医学研究所,瑞士巴塞尔。26马萨诸塞州剑桥的麻省理工学院和哈佛大学研究所。27马萨诸塞州波士顿的达纳 - 法伯癌研究所医学肿瘤学系。28德国癌症研究中心(DKFZ)和国家肿瘤疾病中心(NCT)的转化医学肿瘤学系,德国海德堡。29生物物理学研究生计划,生物学系和加利福尼亚州斯坦福大学斯坦福大学遗传学系。30 Biohub,加利福尼亚州旧金山。 31 Cryoem and Bioimaging,SSRL,SLAC国家加速器实验室,加利福尼亚州Menlo Park。 32分子,细胞和发育生物学系,文学学院,科学学院和艺术学院,密歇根大学,密歇根州安阿伯。 33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。 34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳30 Biohub,加利福尼亚州旧金山。31 Cryoem and Bioimaging,SSRL,SLAC国家加速器实验室,加利福尼亚州Menlo Park。32分子,细胞和发育生物学系,文学学院,科学学院和艺术学院,密歇根大学,密歇根州安阿伯。 33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。 34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳32分子,细胞和发育生物学系,文学学院,科学学院和艺术学院,密歇根大学,密歇根州安阿伯。33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。 34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳33德国神经退行性疾病中心(DZNE)和德国图宾根大学的跨学院生物化学研究所。34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。 35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳34 CALL和发育生物学部分,加利福尼亚大学圣地亚哥分校生物科学系,加利福尼亚州拉霍亚。35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。 36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。 37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳35化学系和斯坦福大学,斯坦福大学和加利福尼亚州斯坦福大学的霍华德·休斯医学院。36韦尔细胞与分子生物学研究所,以及纽约伊萨卡康奈尔大学的分子生物学与遗传学系。37生物医学,代谢和神经科学系,摩德纳大学和雷吉奥·艾米利亚,意大利摩德纳
本出版物为会员国提供了存储库设计原则和方法的概述,这些原理和方法可用于满足其放射性废物处理需求。此外,它描述了一系列经过良好研究的处置概念,这些概念已成功实施或开发到高级设计阶段。为近地面处置设施和位于各个深度的地质存储库提供了潜在设计解决方案的示例。靠近地面设施,适合处理非常低和低水平的废物,包括沟渠,拱顶,轴和直接进入筒仓,以及天然和工程的地下结构,例如洞穴,漂移和隧道。地质存储库概念,适用于处置中间水平和高水平废物(包括被宣布为废物时用过的核燃料),主要包括位于各个深度和一系列岩层的开采处置设施。它们通常包括访问隧道,轴或两者,以及废物沉积隧道,腔室和拱顶。它们还可能包括在此类工程特征中构建的浅钻孔和筒仓。还讨论了替代处置选项,描述了依靠现有设施(例如矿山或其他地下开口)的转换的解决方案。还考虑了钻孔中放射性废物处置的潜力,包括使用非常深的钻孔概念。
耳念珠菌是一种新出现的耐多药真菌,可引起高死亡率的侵袭性感染。尽管人们付出了巨大的努力来了解这种病原体如何迅速出现并在全球传播,但人们对其环境宿主知之甚少。在这里,我们介绍了美国疾病控制和预防中心、美国国家生物技术信息中心和 GridRepublic(一个志愿者计算平台)之间的合作,以识别公开可用的宏基因组数据集中的耳念珠菌序列。我们开发了 MetaNISH 流程,该流程使用 SRPRISM 将序列与一组参考基因组比对,并计算每个参考基因组的分数。我们使用 MetaNISH 扫描了自 2010 年以来约 300,000 个 SRA 宏基因组运行,并确定了五个包含耳念珠菌读数的数据集。最后,GridRepublic 使用 MetaNISH 和志愿者计算实施了一个前瞻性的耳念珠菌分子监测系统。
2014 年秋天,我正在寻找一个能结合我的航空航天和计算机科学背景的博士学位论文主题。代尔夫特理工大学的一份提案中,“开放”、“数据挖掘”和“飞机”这些关键词引起了我的注意,我立即决定提交申请。半年后一个寒冷的春日早晨,我加入了代尔夫特理工大学的航空航天工程系。Hoekstra 教授和 Ellerbroek 博士热烈欢迎了我,并向我介绍了系里、同事、研究和 BlueSky 项目。第一天的最后一站——学院的 De Atmosfeer 酒吧——无疑证实了我的选择正确。这篇论文记录了我过去四年的进展和发现。它本质上回答了一个问题:我们如何使用开放数据来建模和估计飞机性能?大多数章节都基于我自 2016 年以来发表的期刊文章和会议论文集。我攻读博士学位的主要目标是……我的研究目标是建立一个开放的飞机性能模型。因此,这篇论文中产生的模型和工具是共享的,我很自豪其中一些开源工具已经被其他研究人员采用。这四年的旅程一开始似乎很长,但现在它接近终点线,感觉时间短了很多。我要感谢我的推动者 Hoekstra 教授和 Ellerbroek 博士,他们给予了我极大的支持和宝贵的指导。我要感谢 Blom 教授和 Ir. Vû,他们提供了很好的想法并共同撰写了这篇论文的一些章节,也要感谢我的博士委员会成员对这篇论文的有益评论和建议。我还要感谢控制与模拟系的所有同事,特别是感谢我们在咖啡角分享的所有鼓舞人心的哲学对话。最后要感谢我的妻子玛丽,她花了很多时间校对我的论文和这篇论文的文体,并改进了文体。最后,我觉得她可能已经秘密掌握了所有这些 ADS-B 知识。就我个人而言,我非常感谢父母从小就对我追求科学的热爱、支持和鼓励。在我攻读博士学位期间,我也非常幸运地爱上了玛丽并与她结婚,并迎来了我的儿子威廉。