[1] M. V. Chao,“神经营养蛋白及其受体:许多信号通路的收敛点”,Nat。修订版Neurosci。,卷。4,不。4,pp。299–309,2003。[2] M. Bothwell,“ NGF,BDNF,NT3和NT4”,在神经营养因素中。实验药理学手册,施普林格,柏林,海德堡,2014年。[3] R. Levi-Montalcini,H。Meyer和V. Hamburger,“体外实验对小鼠肉瘤180和37对雏鸡胚胎的感觉和交感神经系统的影响,”癌症Res。,1954年。[4] R. Levi-Montalcini,“ 35年后的神经生长因子”,科学(80-。)。,1987。[5] Y.A. Barde,D。Edgar和H. Thoenen,“哺乳动物大脑的新神经营养因子的纯化”,Embo J.,1982。[6] K. R. Jones和L. F. Reichardt,“人类基因的分子克隆,该基因是神经生长因子家族的成员。”natl。学院。SCI。 U. S. A.,1990。 [7] P. C. Maisonpierre等。 ,“神经营养蛋白3:与NGF和BDNF有关的神经营养因子”,科学(80-。 )。 ,1990。 [8] A. Hohn,J。Leibrock,K。Bailey和Y. A. Barde,“神经生长因子/脑源性神经营养因子家族的新成员的识别和表征”,自然,1990年。 [9] A. Rosenthal等。 ,“新型人类神经营养因子的主要结构和生物学活性”,Neuron,1990。 [10] N. Y. IP等。 natl。 学院。 SCI。SCI。U. S. A.,1990。[7] P. C. Maisonpierre等。,“神经营养蛋白3:与NGF和BDNF有关的神经营养因子”,科学(80-。)。,1990。[8] A. Hohn,J。Leibrock,K。Bailey和Y.A. Barde,“神经生长因子/脑源性神经营养因子家族的新成员的识别和表征”,自然,1990年。[9] A. Rosenthal等。,“新型人类神经营养因子的主要结构和生物学活性”,Neuron,1990。[10] N. Y. IP等。natl。学院。SCI。SCI。,“哺乳动物神经营养蛋白4:结构,染色体定位,组织分布和受体特异性。”U. S. A.,1992。[11] R. Gotz等。,“ Neurotrophin-6是神经生长因子家族的新成员”,自然,1994年。[12] K. O. Lai,W。Y. Fu,F。C. F. Ip和N. Y.单元格。Neurosci。,1998。[13] M. A. Bothwell和E. M. Shopter,“β神经生长因子的离解平衡常数”,J Biol Chem,1977。[14] C. Radziejewski,R。C。Robinson,P。S。S. Distefano和J. W. Taylor,“脑源性神经营养因子和神经营养因子和神经营养蛋白3。的二聚体结构和构象稳定性,” Biiochemistry,1992。[15] M. J. Butte,P。K。Hwang,W。C。Mobley和R. J. Fletterick,“ Neurotrophin-3同二聚体的晶体结构显示出不同的区域用于结合其受体,” 1998年。[16] N.[17] R. C. Robinson等。,“神经营养蛋白4同二聚体的结构和脑衍生的神经营养因子/神经营养蛋白4异二聚体揭示了一个常见的TRK结合位点,”蛋白质SCI。,2008。[18] K. K. Teng,S。Felice,T。Kim和B. L. Hempstead,“了解胸部营养蛋白的作用:最近的进步和挑战”,发展性神经生物学。2010。401–3,1992。:ebsCohost,” Annu。修订版Neurosci。[19] G. CM,“通过生理活性调节脑神经营养蛋白表达。”趋势Pharmacol Sci,pp。[20] S. D. Skaper,“神经营养因素:概述”,《分子生物学方法》,2018年。[21] A. K. McAllister,L。C。Katz和D. C. Lo,“神经营养蛋白和突触可塑性。,1999。[22] S. Pezet和S. B. McMahon,“神经营养蛋白:疼痛的介体和调节剂”,Annu。修订版Neurosci。,2006年。[23] D. R. Kaplan,B。L。Hempstead,D。Martin-Zanca,M。V。Chao和L. F. Parada,“ TRK原型癌基产品:神经生长因子的信号传递受体,”科学(80-。)。,1991。[24] R. Klein等。,“ TRKB酪氨酸蛋白激酶是脑源性神经营养因子
2。非洲联盟(AU)和平与安全委员会的会议旨在探索AI在促进非洲和平,安全和发展中的作用,评估其潜力和挑战,并制定策略,以利用AI为非洲大陆的愿望。II。 通过AI3。建设和平 人工智能(AI)为加强整个非洲的和平努力提供了前所未有的机会。 通过利用AI进行调解,和解和冲突后重建,AI可以促进不同社区之间的可持续和平和促进对话。 AI技术可以分析大量数据以识别潜在的紧张局势和不满,从而为有针对性的和平建设干预提供见解。 此外,AI促进了冲突各方之间的沟通和理解,为对话和相互理解创建平台,从而有助于长期和平与稳定。II。通过AI3。人工智能(AI)为加强整个非洲的和平努力提供了前所未有的机会。通过利用AI进行调解,和解和冲突后重建,AI可以促进不同社区之间的可持续和平和促进对话。AI技术可以分析大量数据以识别潜在的紧张局势和不满,从而为有针对性的和平建设干预提供见解。此外,AI促进了冲突各方之间的沟通和理解,为对话和相互理解创建平台,从而有助于长期和平与稳定。
摘要 - 无人驾驶汽车(UAV)对关键应用(例如搜索和救援操作)具有巨大的潜力,在搜索和救援行动中,对室内环境的准确感知至关重要。然而,本地化,3D重建和语义细分的同时融合呈现出一个明显的障碍,尤其是在配备有限的功率和计算资源的UAV背景下。本文提出了一种新的方法,可以解决无人机操作中语义信息提取和利用方面的挑战。我们的系统集成了最先进的视觉大满贯,以估计后端的全面的6多姿势和高级对象分割方法。为了提高框架的计算和存储效率,我们采用了简化的基于体素的3D地图表示 - OctOmap来构建工作系统。此外,融合算法是不合适的,可以从前端大满贯任务和相应点获得每个帧的语义信息。通过利用语义信息,我们的框架增强了无人机在室内空间中感知和导航的能力,从而解决了姿势估计准确性和降低不确定性的挑战。通过凉亭模拟,我们验证了我们提出的系统的功效,并将我们的方法成功地嵌入了用于现实世界应用的Jetson Xavier AGX单元中。索引项 - 语义映射,S3M,无人机,ROS,SLAM。
摘要 - 自主在现实世界环境中进行自主导航,搜索和救援操作的特殊性,无人驾驶飞机(UAVS)需要全面的地图以确保安全。但是,普遍的度量图通常缺乏对整体场景理解至关重要的语义信息。在本文中,我们提出了一个系统来构建一个概率度量图,并富含从RGB-D图像中从环境中提取的对象信息。我们的方法结合了前端的最先进的Yolov8对象检测框架和后端的2D SLAM方法 - 制图师。为了有效跟踪从前端接口提取的语义对象类别类别,我们采用了创新的bot-sort方法。引入了一种新颖的关联方法来提取对象的位置,然后用度量图将其投影。与以前的研究不同,我们的方法在具有各种空心底部对象的环境中可靠地导航。我们系统的输出是概率图,它通过合并特定于对象的属性,包括类别的差异,准确定位和对象高度来显着增强地图的表示形式。已经进行了许多实验来评估我们提出的方法。结果表明,机器人可以有效地产生包含多个对象(尤其是椅子和桌子)的增强语义图。此外,在嵌入式计算机-Jetson Xavier AGX单元中评估我们的系统,以在现实世界应用中演示用例。索引项 - 语义映射,无人机,ROS,度量图。
han,s,yuan,x,Zhao,f,Manyande,Anne Orcid:https://orcid.org/0000-0000-0000-0002-8257-0722,Gao,Go,f,wang,j,j,j,Zhang,w and Zhang,w and tian,x(2024)aletiation aletiation neuropsivation neuropiuntion neuropiuntion neuropiuntion neuropiuntion neuropiuntion neuropiunty 2通过PI3K/AKT途径的小胶质细胞极化和突触可塑性。炎症研究,第73页。157-174。ISSN 1023-3830
我们先前鉴定出含塔林杆域的蛋白1(TLNRD1)是一种有效的肌动蛋白捆绑蛋白的体外。在这里,我们报告了TLNRD1在体内脉管系统中表达。其耗竭会导致体内血管异常和体外内皮细胞单层完整性的调节。我们证明,TLNRD1是通过与CCM2的直接相互作用的脑海绵状畸形(CCM)复合物的组成部分,该复合物是由CCM2中的疏水C-末端螺旋介导的,它附着在TLNRD1的四螺旋域上附着在疏水槽中。这种结合界面的破坏导致细胞核和肌动蛋白纤维中的CCM2和TLNRD1积累。我们的发现表明CCM2控制TLNRD1对细胞质的定位并抑制其肌动蛋白捆绑活性,并且CCM2-TLNRD1相互作用会影响内皮肌动蛋白应激纤维和局灶性粘附形成。基于这些结果,我们提出了一种新的途径,CCM复合物通过该途径调节肌动蛋白细胞骨架和血管完整性。