摘要:循环核苷酸磷酸二酯酶4(PDE4)是一个酶家族,可以专门促进CAMP的水解和降解。对PDE4酶的抑制已被广泛研究为治疗多种呼吸道疾病的可能替代策略,包括慢性阻塞性肺部疾病和哮喘,以及牛皮癣和其他自发疾病。在这种情况下,将新分子鉴定为PDE4抑制剂,仍然是药物发现中的积极研究领域。本综述总结了有效PDE4抑制剂的设计和开发,通过化学类别进行分析,考虑结构方面和结合特性,以及抑制性效率,PDE4选择性以及潜在的AS治疗剂。
多年来,引入CVD中引入的首字母缩略词的死亡人数有所增加。在1990年,估计的死亡人数约为1,210万[95%的不确定性间隔:11.4–1260万],男性和女性之间平均分布。 到2019年,这个数字已上升至1,860万[17.1-19.7],男性中有960万[8.9-10.3],女性的死亡人数为890万[7.9-9.7](图1)。 总体而言,CVD占2019年全球死亡人数的33%,缺血性心脏病(910万人死亡)和中风(660万死亡)占CVD相关死亡的85%。 虽然过去30年中CVD造成的死亡人数增加了,这主要是由于人口的衰老和增长,但占人口人群人口的变化的年龄标准的死亡率已从1990年的354.5人[330.6-369.5]下降,至100,000人[239.9每100,000人[219.4-4-254.9](2019年),在1990年,估计的死亡人数约为1,210万[95%的不确定性间隔:11.4–1260万],男性和女性之间平均分布。到2019年,这个数字已上升至1,860万[17.1-19.7],男性中有960万[8.9-10.3],女性的死亡人数为890万[7.9-9.7](图1)。总体而言,CVD占2019年全球死亡人数的33%,缺血性心脏病(910万人死亡)和中风(660万死亡)占CVD相关死亡的85%。虽然过去30年中CVD造成的死亡人数增加了,这主要是由于人口的衰老和增长,但占人口人群人口的变化的年龄标准的死亡率已从1990年的354.5人[330.6-369.5]下降,至100,000人[239.9每100,000人[219.4-4-254.9](2019年),
背景:面部反馈效应研究通常采用道具或摆出的面部表情,这些表情通常缺乏时间精确性和肌肉特异性。新方法:面部神经肌肉电刺激 (fNMES) 可以控制面部肌肉收缩的影响,可用于提高我们对面部反馈效应的理解,尤其是与脑电图 (EEG) 结合使用时。然而,电刺激会引入显著的干扰,可能会掩盖潜在的大脑动态。现有的信号处理方法是否可以减少上述干扰,同时保留感兴趣的效果,仍未得到探索。结果:我们针对经典的 N170 视觉诱发电位(一种面部敏感的大脑成分)解决了这些问题:20 名参与者观看了房屋以及悲伤、快乐和中性面孔的图像。在半数试验中,在呈现视觉刺激时,fNMES 被传送到双侧下脸肌肉。与房屋相比,面部的 N170 幅度更大。有趣的是,无论是否移除 fNMES 伪影,在 fNMES 期间和不使用 fNMES 期间都是如此。此外,无论是否使用 fNMES,悲伤面部表情都会比中性面部表情引起更大的 N170 振幅。与现有方法的比较:fNMES 提供了一种更精确的方法来操纵面部肌肉的本体感受反馈,这为面部反馈效应研究的实验设计提供了更大的多样性。结论:我们表明,fNMES 和 EEG 的结合是可以实现的,并且可以作为探索受控本体感受输入对各种认知处理类型影响的有力手段。
摘要:货运业预计将保持甚至增强其在主要现代经济体中的基础性作用,因此,采取行动限制日益增长的环境压力迫在眉睫。使用电力是实现运输脱碳的主要选择;在重型车辆领域,它可以以不同的方式实现:除了全电池动力系统外,电力还可用于供电给接触网道路,或可以化学方式储存在液体或气体燃料(电子燃料)中。虽然目前的欧盟立法采用了从油箱到车轮的尾气排放方法,可实现所有直接使用电力的零排放,但从油井到车轮 (WTW) 方法可以考虑使用可持续燃料(如电子燃料)的潜在好处。在本文中,我们对使用电力为重型车辆供电的选项进行了基于 WTW 的比较和建模:电子燃料、电子液化天然气、电子柴油和液态氢。结果表明,直接使用电力可以节省大量温室气体 (GHG),而使用低碳强度电力生产电子燃料也可以节省大量温室气体。虽然大多数研究只关注绝对的温室气体减排潜力,但考虑新基础设施的必要性以及某些方案的技术成熟度对于比较不同的技术至关重要。本文对此类技术和非技术障碍进行了评估,以比较重型行业的替代途径。在可用的选项中,使用直接使用、能量密集型液体燃料的灵活性代表了脱碳的明显且巨大的直接优势。此外,本文采用的新方法使我们能够量化使用电子燃料作为化学储存的潜在好处,这种化学储存能够从可变可再生能源的生产峰值中积累电能,否则这些电能会因电网限制而被浪费。
根据上述目标,我们设计了为期 2 天的在线培训。主要使用的工具是国际专家在在线学习平台 (Adobe Connect) 上就与水利经济建模相关的几个主题进行的现场和录制演示。每节课都以虚拟课堂形式的学习模块开始,介绍培训师提供的主题,然后进行互动问答环节,以促进与学员的互动和公开讨论。所呈现的理论内容通过视频材料进一步说明。培训将以英语和法语两种语言进行,并提供现场翻译。
家畜的改良以满足人类的需求取决于遗传变异——既包括品种内的变异,也包括品种间的变异。遗传变异是动物育种者的基本材料。正是这种变异被用来塑造我们的家畜物种以满足我们的需求,而变异的丧失将限制满足不可预测的未来需求的可用选项。虽然品种内变异的丧失不断通过引入新的变异来抵消(Franklin,1981;Hill 和 Keightley,1988),但以品种间差异形式出现的遗传变异无法轻易再生。每个品种或品系都是突变和遗传漂变的产物,也是单独的适应和进化的产物,通常经过许多世纪,气候、地方性寄生虫和疾病、可用营养和人类强加的标准施加了不同的选择压力。因此,每个品种都包含一组独特的基因。
虽然有关法规,立法和标签的信息通常可以在政府网站上找到,但有时这些文本或格式可能不容易理解。这里提供的示例利用一种简单的语言和插图进行有效的交流。法规因一个国家而异,甚至可能与市政当局到市政当局不同。因此,建议示例中的文本目标,并参考不同的本地上下文。有关政府间努力和条约的信息也可以作为示例的一部分。例如,强调世界贸易组织(WTO)(WTO)的卫生和植物检疫(SPS)措施(WTO,2020a)和技术障碍(WTO,WTO)将是一个好主意,旨在促进公平和公平的交易。该工具重点介绍食品安全评估的监管方面,但并未解决环境风险评估,这是工具7的主题。
无线和移动通信技术的进步促进了移动医疗 (m-health) 系统的发展,以寻找获取、处理、传输和保护医疗数据的新方法。移动医疗系统提供了应对日益增多的需要持续监测的老年人和慢性病患者所需的可扩展性。然而,设计和运行带有体域传感器网络 (BASN) 的此类系统面临双重挑战。首先,传感器节点的能量、计算和存储资源有限。其次,需要保证应用级服务质量 (QoS)。在本文中,我们整合了无线网络组件和应用层特性,为移动医疗系统提供可持续、节能和高质量的服务。特别是,我们提出了一种能量成本扭曲 (ECD) 解决方案,它利用网络内处理和医疗数据自适应的优势来优化传输能耗和使用网络服务的成本。此外,我们提出了一种分布式跨层解决方案,适用于网络规模可变的异构无线移动医疗系统。我们的方案利用拉格朗日对偶理论,在能源消耗、网络成本和生命体征失真之间找到有效的平衡,以实现对延迟敏感的医疗数据传输。仿真结果表明,与基于均等带宽分配的解决方案相比,所提出的方案实现了能源效率和 QoS 要求之间的最佳平衡,同时在目标函数(即 ECD 效用函数)中节省了 15%。
任何计算设备的物理实现,要想真正利用量子理论 [1] 提供的额外能力,都是极其困难的。原则上,我们应该能够在具有明确定义状态空间的系统上执行长相干量子操控(门控)、精确量子态合成以及检测。从一开始,人们就认识到,最大的障碍来自于任何现实量子系统不可避免的开放性。与外部(即非计算)自由度的耦合破坏了量子演化的幺正结构,而这正是量子计算 (QC) 的关键因素。这就是众所周知的退相干问题 [2]。通过量子纠错所追求的主动稳定可以部分克服这一困难,这无疑是理论 QC 的成功 [3]。然而,由于需要低退相干率,目前量子处理器的实验实现方案都是基于量子光学以及原子和分子系统 [1]。事实上,这些领域极其先进的技术已经可以实现简单量子计算机中所需的操作。然而,人们普遍认为,量子信息的未来应用(如果有的话)很难在这样的系统中实现,因为这些系统不允许大规模集成现有的微电子技术。相反,尽管“快速”退相干时间存在严重困难,但固态量子计算机实现似乎是从超快光电子学 [4] 以及纳米结构制造和表征 [5] 的最新进展中获益的唯一途径。为此,主要目标是设计具有“长”退相干时间(与典型的门控时间尺度相比)的量子结构和编码策略。第一个定义明确的基于半导体的量子通信方案 [6] 依赖于量子点 (QD) 中的自旋动力学;它利用了自旋自由度相对于电荷激发的低退相干性。然而,所提出的操纵