镍基高温合金一直在满足燃气轮机对高温材料的需求,以提高工作温度 (T) 并实现更高的效率 [1]。然而,要进一步突破燃气轮机在 T > 1600 C 下的运行极限,就需要发现和开发除相当昂贵的镍基高温合金之外的新型合金。最近对合金探索的兴趣促使人们偏离传统的合金化策略,探索相图中心,从而产生了一种新的合金,即多主元合金 (MPEA) [2]。与沉淀强化合金相比,MPEA 具有单相/双相固溶体(由多种组成元素的比例相当导致的相对“更高”的混合熵驱动),这些固溶体在较高温度下稳定,即使在升高的 T 下也能保持优异的机械、腐蚀和热性能 [2e18]。 MPEA 可用的成分范围非常广泛,而且人们对使用计算和机器学习技术加速合金发现的兴趣日益浓厚,这促进了具有目标特性的 MPEA 的高通量设计研究[8、9、11、12、15、17、19 e 22]。尽管如此,在实验室规模上对这些成分的预测相 / 特性的验证通常仅限于电弧熔炼 [23、24]、机械合金化、放电等离子烧结 [25] 和薄膜沉积 [26]。基于激光沉积的增材制造 (AM) 技术的进步为高通量合成 MPEA 提供了机会,它提高了可扩展性,可以将合金和组件设计结合起来,以获得应用驱动的材料特性 [27 e 36]。然而,AM 的优势有时会被制造方面的挑战所取代,包括材料中的孔隙率
人工智能 (AI) 带来的风险引起了学术界、审计师、政策制定者、AI 公司和公众的极大关注。然而,缺乏对 AI 风险的共同理解会阻碍我们全面讨论、研究和应对这些风险的能力。本文通过创建 AI 风险存储库作为共同的参考框架来解决这一差距。这包括一个从 43 个分类法中提取的 777 个风险的动态数据库,可以根据两个总体分类法进行过滤,并通过我们的网站和在线电子表格轻松访问、修改和更新。我们通过系统地审查分类法和其他结构化的 AI 风险分类,然后进行专家咨询,构建了我们的存储库。我们使用最佳拟合框架综合来开发我们的 AI 风险分类法。我们的高级人工智能风险因果分类法根据其因果因素对每种风险进行分类 (1) 实体:人类、人工智能;(2) 意向性:有意、无意;和 (3) 时间:部署前;部署后。我们的中级人工智能风险领域分类法将风险分为七个人工智能风险领域:(1) 歧视和毒性,(2) 隐私和安全,(3) 错误信息,(4) 恶意行为者和滥用,(5) 人机交互,(6) 社会经济和环境,以及 (7) 人工智能系统安全、故障和局限性。这些进一步分为 23 个子域。据我们所知,人工智能风险存储库是首次尝试严格整理、分析和提取人工智能风险框架,将其整合到一个可公开访问、全面、可扩展且分类的风险数据库中。这为以更协调、更一致、更完整的方式定义、审计和管理人工智能系统带来的风险奠定了基础。
白粉病是草莓生产中最严重的疾病之一。迄今为止,很少有商业草莓品种被认为具有完全抗性,因此必须实施广泛的喷药计划来控制病原体。在这里,我们进行了一项大规模田间试验,以确定不同草莓基因型的叶片和果实组织的白粉病抗性状况。这些表型数据用于识别与组织特异性白粉病抗性相关的数量性状核苷酸 (QTN)。总共发现六个稳定的 QTN 与叶面抗性有关,其中一个位于 7D 染色体上的 QTN 与抗性增加 61% 相关。与叶片结果相反,没有与果实抗病性相关的 QTN,在草莓果实上观察到高水平的抗性,果实和叶片症状之间没有观察到遗传相关性,表明组织特异性反应。除了识别基因位点之外,我们还证明了基因组选择可以快速提高基因型的叶面抗性,并有可能捕获种群中存在的 50% 以上的遗传叶面抗性。迄今为止,草莓中强抗白粉病的育种一直受到天然抗性的定量性质以及缺乏有关该性状的遗传控制知识的阻碍。这些结果解决了这一不足,为社区提供了可用于基因组知情育种的大量信息,实施该育种可以提供对抗白粉病的天然抗性策略。
写作是语言活动的一部分,与阅读和口语密不可分。在写作技能的培养过程中,存在词汇量不足、句子结构难以构成等错误。因此,需要创新性的努力,其中之一就是运用模型以及针对学习需求的教学技巧。生成模型属于思维导向型教学方法,以问题解决为基础。本研究旨在探究学习成果的差异,以及在序列图像辅助下,生成模型在SDN Keboan Anom小学五年级学生学习叙事性文章写作方面的有效性。
。DNA渲染提出了几个吸引人的属性。首先,我们的数据集包含1500多名人类受试者,5000个运动序列和67。5 m帧的数据量。在大规模的收藏中,我们为人类受试者提供了巨大的姿势动作,身体形状,衣服,配饰,发型和物体交集,范围从日常生活到专业场合的几何形状和外观差异。第二,我们为每个主题提供丰富的资产 - 2D/3D人体关键点,前景口罩,SMPLX型号,布/配件材料,多视图图像和视频。这些资产提高了当前方法在下游渲染任务上的准确性。第三,我们构建了一个专业的多视图系统来捕获数据,该系统包含60个具有最大4096×3000分辨率,15 fps速度和船尾摄像头校准步骤的同步摄像机,以确保用于任务培训和评估的高质量资源。
背景:SAMHD1 通过切割三磷酸化形式介导对抗癌核苷类似物的耐药性,包括常用于治疗白血病的阿糖胞苷、地西他滨和奈拉滨。因此,SAMHD1 抑制剂是使白血病细胞对基于核苷类似物的疗法敏感的有希望的候选药物。在这里,我们在 SAMHD1 的背景下研究了胞嘧啶类似物 CNDAC 的影响,该物质已被提议作为 SAMHD1 抑制剂。方法:在 13 种急性髓系白血病 (AML) 细胞系、26 种急性淋巴细胞白血病 (ALL) 细胞系、10 种适应各种抗白血病药物的 AML 亚系、24 种单细胞衍生的克隆 AML 亚系和来自 24 名 AML 患者的原发性白血病母细胞中测试了 CNDAC。此外,还建立了 24 个 AML 细胞系 HL-60 和 PL-21 的 CNDAC 抗性亚系。使用 CRISPR/Cas9 破坏 SAMHD1 基因,使用 RNAi 和病毒 Vpx 蛋白耗尽 SAMHD1。通过慢病毒转导实现强制 DCK 表达。用甲基化敏感的 HpaII 内切酶处理基因组 DNA 后,通过 PCR 确定 SAMHD1 启动子甲基化。通过 LC-MS/MS 测定核苷(类似物)三磷酸盐水平。通过酶促测定和结晶分析了 CNDAC 与 SAMHD1 的相互作用。结果:尽管胞嘧啶类似物 CNDAC 预计会抑制 SAMHD1,但 SAMHD1 介导白血病细胞中的内在 CNDAC 抗性。因此,SAMHD1 耗竭会增加 CNDAC 三磷酸盐 (CNDAC-TP) 水平和 CNDAC 毒性。酶促分析和结晶研究证实,CNDAC-TP 是 SAMHD1 底物。在 24 个适应 CNDAC 的急性髓系白血病 (AML) 亚系中,抗药性是由 DCK(催化初始核苷磷酸化)损失引起的。适应 CNDAC 的亚系仅对其他 DCK 底物(例如阿糖胞苷、地西他滨)表现出交叉抗药性。适应不受 DCK 或 SAMHD1 影响的药物的细胞系仍然对 CNDA C 敏感。在适应阿糖胞苷的 AML 细胞中,SAMHD1 增加和 DCK 水平降低导致阿糖胞苷和 CNDAC 抗药性。
获得了隐藏在Stego图像上的文本。3。接受者通过使用已生成的ECC密钥进行秘密密钥解密过程,直到从AES Secret Keys获得授权为止。4。接收者使用已获得的AES秘密密钥进行消息解密过程,直到获得授权为止。
摘要:沙特阿拉伯王国(KSA)的经济和社会发展导致电力消费迅速增加,而住宅部门的消耗约占总发电量的50%。KSA很大程度上取决于不可再生能源,政府已经产生了沙特愿景2030。该计划旨在减少该国对化石燃料的依赖,并减少相关问题,例如空气污染。沙特愿景2030结合了可再生能源和新的建筑设计,例如,计划中的Neom城市将是零净能源。本研究介绍了如何通过屋顶建筑物中的屋顶光伏发电量最大程度地减少Neom对国家电网的依赖。该研究开发了一种屋顶PV的技术经济模型,其电池存储适用于可能在Neom City(别墅,传统房屋和公寓)建造的现有住宅建筑类型,并评估PV面板的最佳PV尺寸,电池存储容量和最佳方向。该研究使用Homer Pro来计算净现在成本,水平的能源成本,PV面板的方向以及最佳的PV系统尺寸。VILLA的PV系统的最佳尺寸为14.0 kW,传统住宅为11.1 kW,公寓为10.3 kW,每个容量为12 kWh。
1名Muneta Grace Kangara医生。 土壤科学家。 Rothamsted Research West Common Harpenden AL5 2JQ英国。 电话:01582938516。 电子邮件:grace.kangara@rothamsted.ac.uk。 orcid ID:https://orcid.org/0000-0002-3784-4915 2医生Chenjerai。 Muwaniki。 讲师:罗伯特·穆加贝(Robert Mugabe)遗产与教育学校的成人和继续教育。 伟大的津巴布韦大学,津巴布韦马斯文诺市P/BAG 2135。 来访讲师:终身学习和社区发展。 博茨瓦纳大学,加博隆,博茨瓦纳塔尔:+263 775369343。 电子邮件cmuwaniki@gzu.ac.zw。 orcid ID:https://orcid.org/0000-0002-0476-0168 3医生Shephard Siziba。 高级讲师,农业和社会经济学家。 津巴布韦农业综合企业发展与经济学系P.O. 盒子MP167,山巴布尔山山,津巴布韦。 电话:+263775780424;发送电子邮件至s.siziba@hotmail.com。 orcid ID:https://orcid.org/0000-0002-6861-0230。 4塔夫雷伊·chamboko医生。 农业经济学家和高级讲师。 津巴布韦农业发展与经济学系P.O. 盒子MP167,山巴布尔山山,津巴布韦。 电话:+263 772349599;发送电子邮件至tafireyi2000@gmail.com。 orcid ID:https://orcid.org/0000-0002-5968-369x。 5佛罗伦萨·姆坦巴韦教授。 研究与创新执行董事。 津巴布韦大学P.O. 盒子MP167,山巴布尔山山,津巴布韦。 电话:+263 242 303211 Ext 11242/11158;发送电子邮件至fmtambanengwe@admin.uz.ac.zw。1名Muneta Grace Kangara医生。土壤科学家。Rothamsted Research West Common Harpenden AL5 2JQ英国。电话:01582938516。电子邮件:grace.kangara@rothamsted.ac.uk。orcid ID:https://orcid.org/0000-0002-3784-4915 2医生Chenjerai。Muwaniki。 讲师:罗伯特·穆加贝(Robert Mugabe)遗产与教育学校的成人和继续教育。 伟大的津巴布韦大学,津巴布韦马斯文诺市P/BAG 2135。 来访讲师:终身学习和社区发展。 博茨瓦纳大学,加博隆,博茨瓦纳塔尔:+263 775369343。 电子邮件cmuwaniki@gzu.ac.zw。 orcid ID:https://orcid.org/0000-0002-0476-0168 3医生Shephard Siziba。 高级讲师,农业和社会经济学家。 津巴布韦农业综合企业发展与经济学系P.O. 盒子MP167,山巴布尔山山,津巴布韦。 电话:+263775780424;发送电子邮件至s.siziba@hotmail.com。 orcid ID:https://orcid.org/0000-0002-6861-0230。 4塔夫雷伊·chamboko医生。 农业经济学家和高级讲师。 津巴布韦农业发展与经济学系P.O. 盒子MP167,山巴布尔山山,津巴布韦。 电话:+263 772349599;发送电子邮件至tafireyi2000@gmail.com。 orcid ID:https://orcid.org/0000-0002-5968-369x。 5佛罗伦萨·姆坦巴韦教授。 研究与创新执行董事。 津巴布韦大学P.O. 盒子MP167,山巴布尔山山,津巴布韦。 电话:+263 242 303211 Ext 11242/11158;发送电子邮件至fmtambanengwe@admin.uz.ac.zw。Muwaniki。讲师:罗伯特·穆加贝(Robert Mugabe)遗产与教育学校的成人和继续教育。伟大的津巴布韦大学,津巴布韦马斯文诺市P/BAG 2135。来访讲师:终身学习和社区发展。博茨瓦纳大学,加博隆,博茨瓦纳塔尔:+263 775369343。电子邮件cmuwaniki@gzu.ac.zw。orcid ID:https://orcid.org/0000-0002-0476-0168 3医生Shephard Siziba。高级讲师,农业和社会经济学家。津巴布韦农业综合企业发展与经济学系P.O.盒子MP167,山巴布尔山山,津巴布韦。电话:+263775780424;发送电子邮件至s.siziba@hotmail.com。orcid ID:https://orcid.org/0000-0002-6861-0230。4塔夫雷伊·chamboko医生。农业经济学家和高级讲师。津巴布韦农业发展与经济学系P.O.盒子MP167,山巴布尔山山,津巴布韦。电话:+263 772349599;发送电子邮件至tafireyi2000@gmail.com。orcid ID:https://orcid.org/0000-0002-5968-369x。5佛罗伦萨·姆坦巴韦教授。研究与创新执行董事。津巴布韦大学P.O.盒子MP167,山巴布尔山山,津巴布韦。电话:+263 242 303211 Ext 11242/11158;发送电子邮件至fmtambanengwe@admin.uz.ac.zw。orcid ID:http://orcid.org/0000-0002-8250-9075 6教授Volker Wedekind。教育学院的负责人。教育学院,纽约大学诺丁汉大学,诺丁汉,NG8 1BB,英国。电话:0115 951 6529电子邮件:volker.wedekind@nottingham.ac.uk。orcid ID:https://orcid.org/0000-0002-7620-3846。