2。非洲联盟(AU)和平与安全委员会的会议旨在探索AI在促进非洲和平,安全和发展中的作用,评估其潜力和挑战,并制定策略,以利用AI为非洲大陆的愿望。II。 通过AI3。建设和平 人工智能(AI)为加强整个非洲的和平努力提供了前所未有的机会。 通过利用AI进行调解,和解和冲突后重建,AI可以促进不同社区之间的可持续和平和促进对话。 AI技术可以分析大量数据以识别潜在的紧张局势和不满,从而为有针对性的和平建设干预提供见解。 此外,AI促进了冲突各方之间的沟通和理解,为对话和相互理解创建平台,从而有助于长期和平与稳定。II。通过AI3。人工智能(AI)为加强整个非洲的和平努力提供了前所未有的机会。通过利用AI进行调解,和解和冲突后重建,AI可以促进不同社区之间的可持续和平和促进对话。AI技术可以分析大量数据以识别潜在的紧张局势和不满,从而为有针对性的和平建设干预提供见解。此外,AI促进了冲突各方之间的沟通和理解,为对话和相互理解创建平台,从而有助于长期和平与稳定。
由安德烈·梅特罗(AndréMétro)撰写并于1955年出版的第一版《种植的桉树》(Eucalypts)在过去的二十年中一直在许多国家 /地区使用。在那个时期,在建立和种植技术领域都有重大发展。种植园报告的面积增加了五倍,现在至少达到了至少400万公顷,分布在澳大利亚和东印度属的自然分布区域以外的90个国家 /地区。桉树对开发世界的重要性越来越重要,其中八十个国家报告了他们对该属的兴趣。他们有很多用途,用于锯木。牙髓,木材基面板,杆和柱子以及环境和便利设施的种植。他们在生产可再生的燃木资源中起着特别重要的作用,它们为特定的重力和体积生产提供了极好的结合。一种或其他一种桉树对从半渗透到冷气或高山的广泛气候的适应性是它们作为Exotics取得显着成功的原因之一。
技术转让涉及知识从技术开发者或拥有者流向从知识中受益的技术获取者。本文提出了一个模型,用于评估发达国家向发展中国家的复杂技术转让项目中的知识流。所提出的知识流模型是通过将知识粘度和速度的概念与架构和组件知识的概念相结合而建立的。该模型基于这样的理念:向资源有限的组织(例如发展中国家的组织)转移知识,一方面需要在粘度和速度之间取得平衡,另一方面需要在架构和组件知识之间取得平衡。知识流模型已在三个地球观测小型卫星合作项目的数据上进行了测试,阿尔及利亚利用这些合作项目来从国外获取小型卫星技术并建立本地能力。该模型的实施表明,合作项目只能获得脱离当地环境的浅层架构知识。研究结果反映了合作项目机制的局限性以及技术获取者在实现适当的组件/架构和粘度/速度平衡方面面临的挑战。关键词:小型卫星技术转让;技术转让建模;发展中国家;复杂技术转让;知识流。
摘要:RASSF1A 肿瘤抑制因子是一种参与细胞信号传导的再生蛋白。越来越多的证据表明,这种蛋白质位于复杂信号网络的交叉点,该网络包括细胞稳态的关键调节器,例如 Ras、MST2/Hippo、p53 和死亡受体通路。RASSF1A 表达的丧失是实体肿瘤中最常见的事件之一,通常是由 DNA 甲基化导致的基因沉默引起的。因此,重新表达 RASSF1A 或针对其复杂信号网络的影响模块进行治疗是治疗多种肿瘤类型的一种有希望的途径。在这里,我们回顾了 RASSF1A 信号网络的主要模块以及网络失调对不同癌症类型的影响的证据。具体来说,我们总结了介导 RASSF1A 启动子甲基化的表观遗传机制以及 Hippo 和 RAF1 信号模块。最后,我们讨论了重建 RASSF1A 功能的不同策略,以及如何通过多靶向途径方法选择此网络中的可用药节点来开发新的癌症治疗方法。
获得了隐藏在Stego图像上的文本。3。接受者通过使用已生成的ECC密钥进行秘密密钥解密过程,直到从AES Secret Keys获得授权为止。4。接收者使用已获得的AES秘密密钥进行消息解密过程,直到获得授权为止。
摘要 伴随前庭功能障碍的失忆症状表明前庭和视觉记忆系统之间存在功能关系。然而,人们对其背后的认知过程知之甚少。作为起点,我们寻找一种跨模态相互作用的证据,这种相互作用通常在其他感觉模态之间观察到,在这种相互作用中,如果先前将目标(在本例中为视觉)与来自另一个感觉域(在本例中为前庭)的独特、时间上一致的刺激相结合,则更容易识别目标。参与者首先执行视觉检测任务,其中刺激出现在计算机网格内的随机位置。参与者不知道,一种特定刺激的开始伴随着短暂的亚感觉脉冲电前庭刺激 (GVS)。在两个视觉搜索实验中,当在先前检测任务中出现 GVS 配对视觉刺激的网格位置呈现时,旧目标和新目标都能更快地被识别。这种位置优势似乎是基于相对而非绝对空间坐标,因为当搜索网格旋转 90° 时,这种效果仍然有效。这些发现共同表明,当个体回到熟悉的视觉场景(此处为 2D 网格)时,如果目标出现在之前与独特的、与任务无关的前庭线索相关联的位置,则视觉判断会得到促进。这种多感官相互作用的新案例对于理解前庭信号如何影响认知过程具有更广泛的意义,并有助于限制 GVS 日益增长的治疗应用。
Robert D. Fish(R.Fish@imperial.ac.uk)隶属于杜勒尔保护与生态研究所,位于肯特大学,英国坎特伯雷,英国坎特伯雷和英国伦敦帝国学院的环境政策中心,在英国伦敦,英国,英国伦敦。 Gail E. Austen,Jacob W. Bentley,Jessica C. Fisher,Phoebe R. Bentley和Zoe G. Davies(Z.G.Davies@kent.ac.uk)隶属于迪尔雷尔保护与生态研究所,位于肯特大学,位于肯特大学,位于肯特大学的英国坎特伯里大学,在英国,英国,英国国王。 马丁·达利默(Martin Dallimer)隶属于可持续发展研究所,地球与环境学院,利兹大学,英国利兹大学,英国,英国和环境政策中心,伦敦帝国学院,英国伦敦伦敦帝国学院。 Katherine N. Irvine隶属于英国苏格兰阿伯丁市詹姆斯·赫顿学院的社会,经济和地理科学系。 Maximilian Nawrath隶属于肯特大学的杜雷尔保护与生态研究所,英国坎特伯雷,英国坎特伯雷,挪威奥斯陆的挪威水研究所。Robert D. Fish(R.Fish@imperial.ac.uk)隶属于杜勒尔保护与生态研究所,位于肯特大学,英国坎特伯雷,英国坎特伯雷和英国伦敦帝国学院的环境政策中心,在英国伦敦,英国,英国伦敦。Gail E. Austen,Jacob W. Bentley,Jessica C. Fisher,Phoebe R. Bentley和Zoe G. Davies(Z.G.Davies@kent.ac.uk)隶属于迪尔雷尔保护与生态研究所,位于肯特大学,位于肯特大学,位于肯特大学的英国坎特伯里大学,在英国,英国,英国国王。马丁·达利默(Martin Dallimer)隶属于可持续发展研究所,地球与环境学院,利兹大学,英国利兹大学,英国,英国和环境政策中心,伦敦帝国学院,英国伦敦伦敦帝国学院。Katherine N. Irvine隶属于英国苏格兰阿伯丁市詹姆斯·赫顿学院的社会,经济和地理科学系。Maximilian Nawrath隶属于肯特大学的杜雷尔保护与生态研究所,英国坎特伯雷,英国坎特伯雷,挪威奥斯陆的挪威水研究所。
Callaway,Heather M。; Hastie,Kathryn M。; Schendel,Sharon L。;李,高阳; Yu,小;谢克,杰里米;巴克,蒂拉; Hui,肖恩;贝格,丹; Troup,Camille;丹尼森(S. Moses);李,坎; Alpert,Michael d。;贝利,查尔斯C。沙龙的苯甲诺; Bonnevier,Jody L。; Chen,Jin-Qiu;陈,魅力; Cho,Hyeseon; Crompton,Peter d。;文森特·杜森(Dussupt); Entzminger,Kevin c。; Ezzyat,Yassine;弗莱明,乔纳森·K。 Geukens,尼克;吉尔伯特(Amy)旺朱恩(Guan);汉,小吉安;哈维,克里斯托弗·J(Christopher J。); Hatler,Julia M。;豪伊,布莱恩; hu,chao;黄,艾隆;伊姆布雷希特(Maya);金,艾森;卡马奇,尼克;吉特尼,格拉迪斯;克林格,马克; Kolls,Jay K。;克雷布斯(Krebs),雪莉(Shelly J。);李,刺;罗,菲扬;马鲁山,托西亚基; Meehl,Michael A。; Mendez-Rivera,Letzibeth;穆萨,安德里亚; Okumura,C.J。 ;鲁宾,本杰明E.R. ;萨托(Aaron K);沉,迈耶;辛格,阿尼鲁德;歌曲,Shuyi;谭,约书亚; Trimarchi,Jeffrey M。; dhruvkumar p。upadhyay;王,耶明; lei,lei; Yuan,Tom Z。;尤斯科(Yusko),埃里克(Erik);彼得斯,伯乔恩;佐治亚州托马拉斯; Saphire,Erica Ollmann 2023Callaway,Heather M。; Hastie,Kathryn M。; Schendel,Sharon L。;李,高阳; Yu,小;谢克,杰里米;巴克,蒂拉; Hui,肖恩;贝格,丹; Troup,Camille;丹尼森(S. Moses);李,坎; Alpert,Michael d。;贝利,查尔斯C。沙龙的苯甲诺; Bonnevier,Jody L。; Chen,Jin-Qiu;陈,魅力; Cho,Hyeseon; Crompton,Peter d。;文森特·杜森(Dussupt); Entzminger,Kevin c。; Ezzyat,Yassine;弗莱明,乔纳森·K。 Geukens,尼克;吉尔伯特(Amy)旺朱恩(Guan);汉,小吉安;哈维,克里斯托弗·J(Christopher J。); Hatler,Julia M。;豪伊,布莱恩; hu,chao;黄,艾隆;伊姆布雷希特(Maya);金,艾森;卡马奇,尼克;吉特尼,格拉迪斯;克林格,马克; Kolls,Jay K。;克雷布斯(Krebs),雪莉(Shelly J。);李,刺;罗,菲扬;马鲁山,托西亚基; Meehl,Michael A。; Mendez-Rivera,Letzibeth;穆萨,安德里亚; Okumura,C.J。;鲁宾,本杰明E.R.;萨托(Aaron K);沉,迈耶;辛格,阿尼鲁德;歌曲,Shuyi;谭,约书亚; Trimarchi,Jeffrey M。; dhruvkumar p。upadhyay;王,耶明; lei,lei; Yuan,Tom Z。;尤斯科(Yusko),埃里克(Erik);彼得斯,伯乔恩;佐治亚州托马拉斯; Saphire,Erica Ollmann 2023
1 约翰·英纳斯中心,诺里奇研究园区,诺里奇,英国;2 伯明翰大学生物科学学院,伯明翰,英国;3 约翰·宾厄姆实验室,剑桥,英国;4 澳大利亚堪培拉联邦科学与工业研究组织、农业与食品部 (CSIRO);5 意大利菲奥伦佐拉达尔达基因组学和生物信息学研究中心农业研究与经济理事会;6 欧洲分子生物学实验室,欧洲生物信息学研究所,威康基因组园区,欣克斯顿,英国;7 罗瑟姆斯特德研究中心,哈彭登,英国;8 昆士兰大学昆士兰农业与食品创新联盟,圣卢西亚,澳大利亚;9 诺丁汉大学植物与作物科学系,萨顿博宁顿校区,拉夫堡,英国; 10 意大利博洛尼亚大学农业与食品科学系(DISTAL);11 加拿大萨斯卡通萨斯喀彻温大学作物发展中心;12 墨西哥埃尔巴丹国际玉米和小麦改良中心(CIMMYT)