[1] M. V. Chao,“神经营养蛋白及其受体:许多信号通路的收敛点”,Nat。修订版Neurosci。,卷。4,不。4,pp。299–309,2003。[2] M. Bothwell,“ NGF,BDNF,NT3和NT4”,在神经营养因素中。实验药理学手册,施普林格,柏林,海德堡,2014年。[3] R. Levi-Montalcini,H。Meyer和V. Hamburger,“体外实验对小鼠肉瘤180和37对雏鸡胚胎的感觉和交感神经系统的影响,”癌症Res。,1954年。[4] R. Levi-Montalcini,“ 35年后的神经生长因子”,科学(80-。)。,1987。[5] Y.A. Barde,D。Edgar和H. Thoenen,“哺乳动物大脑的新神经营养因子的纯化”,Embo J.,1982。[6] K. R. Jones和L. F. Reichardt,“人类基因的分子克隆,该基因是神经生长因子家族的成员。”natl。学院。SCI。 U. S. A.,1990。 [7] P. C. Maisonpierre等。 ,“神经营养蛋白3:与NGF和BDNF有关的神经营养因子”,科学(80-。 )。 ,1990。 [8] A. Hohn,J。Leibrock,K。Bailey和Y. A. Barde,“神经生长因子/脑源性神经营养因子家族的新成员的识别和表征”,自然,1990年。 [9] A. Rosenthal等。 ,“新型人类神经营养因子的主要结构和生物学活性”,Neuron,1990。 [10] N. Y. IP等。 natl。 学院。 SCI。SCI。U. S. A.,1990。[7] P. C. Maisonpierre等。,“神经营养蛋白3:与NGF和BDNF有关的神经营养因子”,科学(80-。)。,1990。[8] A. Hohn,J。Leibrock,K。Bailey和Y.A. Barde,“神经生长因子/脑源性神经营养因子家族的新成员的识别和表征”,自然,1990年。[9] A. Rosenthal等。,“新型人类神经营养因子的主要结构和生物学活性”,Neuron,1990。[10] N. Y. IP等。natl。学院。SCI。SCI。,“哺乳动物神经营养蛋白4:结构,染色体定位,组织分布和受体特异性。”U. S. A.,1992。[11] R. Gotz等。,“ Neurotrophin-6是神经生长因子家族的新成员”,自然,1994年。[12] K. O. Lai,W。Y. Fu,F。C. F. Ip和N. Y.单元格。Neurosci。,1998。[13] M. A. Bothwell和E. M. Shopter,“β神经生长因子的离解平衡常数”,J Biol Chem,1977。[14] C. Radziejewski,R。C。Robinson,P。S。S. Distefano和J. W. Taylor,“脑源性神经营养因子和神经营养因子和神经营养蛋白3。的二聚体结构和构象稳定性,” Biiochemistry,1992。[15] M. J. Butte,P。K。Hwang,W。C。Mobley和R. J. Fletterick,“ Neurotrophin-3同二聚体的晶体结构显示出不同的区域用于结合其受体,” 1998年。[16] N.[17] R. C. Robinson等。,“神经营养蛋白4同二聚体的结构和脑衍生的神经营养因子/神经营养蛋白4异二聚体揭示了一个常见的TRK结合位点,”蛋白质SCI。,2008。[18] K. K. Teng,S。Felice,T。Kim和B. L. Hempstead,“了解胸部营养蛋白的作用:最近的进步和挑战”,发展性神经生物学。2010。401–3,1992。:ebsCohost,” Annu。修订版Neurosci。[19] G. CM,“通过生理活性调节脑神经营养蛋白表达。”趋势Pharmacol Sci,pp。[20] S. D. Skaper,“神经营养因素:概述”,《分子生物学方法》,2018年。[21] A. K. McAllister,L。C。Katz和D. C. Lo,“神经营养蛋白和突触可塑性。,1999。[22] S. Pezet和S. B. McMahon,“神经营养蛋白:疼痛的介体和调节剂”,Annu。修订版Neurosci。,2006年。[23] D. R. Kaplan,B。L。Hempstead,D。Martin-Zanca,M。V。Chao和L. F. Parada,“ TRK原型癌基产品:神经生长因子的信号传递受体,”科学(80-。)。,1991。[24] R. Klein等。,“ TRKB酪氨酸蛋白激酶是脑源性神经营养因子
摘要 - 这项工作报告并彻底讨论了由Metas开发的双重约瑟夫森阻抗桥与CMI和Inrim-Polito开发的电子完全数字阻抗桥梁之间的双边比较结果。桥的目标精度在前者的水平为10-9至10-8的水平,而后者的零件水平为10 7的水平。用R:R和R:C标准测试了桥梁,名义幅度为12。9 K,具有量子厅电阻标准,在适用于从AC量子大厅电阻标准或AC/DC可计算的可计算传递电阻标准标准的AC量子大厅电阻标准的主要直接实现ohm和Farad的条件下。对于涉及幅度比的情况,结果在不确定性的预期水平上完全兼容,但是使用R:C标准标准的相测量显示出一些不兼容。
新月形肾小球肾炎的特征是肾小球周围空间中的血管坏死和顶叶上皮细胞增生,导致新月形的形成。对推动这一过程的分子机制知之甚少。在两个PAX2CRE小鼠模型中诱导新月肾小球肾炎,表明新月形源自单个不成熟的山地上皮细胞的克隆膨胀。用Panobinostat抑制了脱乙酰脱乙酰基酶的先发制人和延迟的组蛋白脱乙酰基酶,Panobinostat是一种用于治疗造血干细胞疾病的药物,可在两种小鼠模型中恢复肾脏功能,使新月形肾小球肾炎减弱。Three- dimensional confocal microscopy and stimulated emission depletion superresolution imaging of mouse glomeruli showed that, in addition to exerting an anti-inflammatory and immunosuppressive effect, panobinostat induced differentiation of an immature hyperplastic parietal epithelial cell subset into podocytes, thereby restoring the glomerular filtration barrier.在体外对人肾脏祖细胞细胞的单细胞RNA测序鉴定了未成熟的层阳性细胞子群,并揭示了这种表达层蛋白的祖细胞细胞子群的膨胀与人膜肌肾上腺肾炎的结果不佳有关。在体外用链球托管在肾脏祖细胞中减弱了地层表达,减少其增殖,并促进其分化为足细胞。这些结果提供了对肾小球新月形形成的机械见解,并证明了肾脏祖细胞的选择性靶向可以减弱新月形的形成和肾脏在小鼠中肾小球肾小球肾炎中的恶化。
我们介绍了CHATSQC,这是一种创新的聊天机器人系统,将OpenAI大语言模型(LLM)的力量与统计质量控制(SQC)的特定知识基础相结合。我们的研究重点是使用特定的SQC参考来增强LLM,阐明了数据预处理参数和LLM选择如何影响生成的响应的质量。通过插图这一过程,我们希望激励更广泛的社区参与,以完善LLM的设计和输出评估技术。我们还强调了SQC Do的潜在研究机会 - 可以通过利用CHATSQC来促进,从而扩大了SQC的应用范围。我们工作的主要目标是提供一个模板和概念概念,以了解我们的社区如何利用LLM。为了不断改进CHATSQC,我们要求SQC通讯提供反馈,突出潜在问题,请求其他功能和/或通过我们的公共GitHub存储库通过拉动请求进行贡献。此外,团队将继续探索添加补充参考材料,以进一步改善对聊天机器人的上下文理解。总的来说,CHATSQC证明了SQC中AI的变革性潜力,我们希望这将促进该领域AI集成的进一步进步。
摘要 - 无人驾驶汽车(UAV)对关键应用(例如搜索和救援操作)具有巨大的潜力,在搜索和救援行动中,对室内环境的准确感知至关重要。然而,本地化,3D重建和语义细分的同时融合呈现出一个明显的障碍,尤其是在配备有限的功率和计算资源的UAV背景下。本文提出了一种新的方法,可以解决无人机操作中语义信息提取和利用方面的挑战。我们的系统集成了最先进的视觉大满贯,以估计后端的全面的6多姿势和高级对象分割方法。为了提高框架的计算和存储效率,我们采用了简化的基于体素的3D地图表示 - OctOmap来构建工作系统。此外,融合算法是不合适的,可以从前端大满贯任务和相应点获得每个帧的语义信息。通过利用语义信息,我们的框架增强了无人机在室内空间中感知和导航的能力,从而解决了姿势估计准确性和降低不确定性的挑战。通过凉亭模拟,我们验证了我们提出的系统的功效,并将我们的方法成功地嵌入了用于现实世界应用的Jetson Xavier AGX单元中。索引项 - 语义映射,S3M,无人机,ROS,SLAM。
图1:SQ II D FS的制造。GMO/氯仿溶液沉积在刚性底物的顶部,然后使用自旋夹具将其放置在旋转下。这导致虹彩膜可见,肉眼可见,然后可以水合以使转基因生物自我组装到预期的立方结构中。在室温,大气压和水过量时,所得的脂质膜的特征是在3D空间中重复多个Q II D(PN-3M空间对称性)单位细胞,因此产生了所谓的Q II D相。每个单位电池的表面呈现一个覆盖整个IPM的脂质双层。
免责声明/投诉法规,如果您认为某些材料的数字出版会侵犯您的任何权利或(隐私)利益,请告诉图书馆,说明您的理由。在合法投诉的情况下,图书馆将使材料无法访问和/或将其从网站上删除。请询问图书馆:https://uba.uva.nl/en/contact,或致:阿姆斯特丹大学图书馆,秘书处,Singel 425,1012 WP阿姆斯特丹,荷兰。您将尽快与您联系。
背景和假设:从第一个精神病中恢复是一个高度个性化的过程,要求人们理解自己的经验。临床医生反过来需要理解这些第一人称的观点,从而产生一种相互的感知动态。抗精神病药是腹膜治疗的重要组成部分。提供抗精神病药恢复恢复体验的见解可以改善相互的理解,并有助于弥合临床医生和从精神病中恢复的人的观点之间的差距。研究设计:采访了使用反精神病的14人从第一次精神病中恢复过来。使用解释性现象学分析(IPA)对他们的叙述进行了分析。研究结果:发现了五个总体主题,代表了使用抗精神病药物恢复的重要且有意义的经验。主题1:抗精神病药作为外部抑制作用(4个子主题);主题2:现实转移;主题3:恢复步伐;主题4:抗精神病药对身份的影响;主题5:它真的是抗精神病药吗?结论:我们的发现表明,抗精神病药从精神病中恢复是一种无所不包,多方面和矛盾的经验。这项研究中发现的主题可能会激发临床医生的重新覆盖抗精神病药的经验的明显方面。更重要的是,关注第一人称观点可能会导致更彻底的理解和受益于治疗关系。
由神经保护性氨基醇 / barletti诱导的质膜模型的外层重组; Lucchesi,Giacomo;马斯喀特,Stefano; Errico,Silvia; Barbut,Denise; Danani,安德里亚;扎斯洛夫,迈克尔; Grasso,Gianvito; Chiti,Fabrizio; Caminati,加布里埃拉。- in:胶体和表面。b,生物界面。- ISSN 1873-4367。- 邮票。-222:(2023),pp。113115.1-113115.12。