摘要 — 将美国国家标准与技术研究所 (NIST) 生产的几种石墨烯量化霍尔电阻 (QHR) 器件与美国国家先进工业科学与技术研究所 (AIST) 的 GaAs QHR 器件和 100 Ω 标准电阻进行了比较。100 Ω 电阻与石墨烯 QHR 器件的测量值与通过 GaAs 测量获得的 100 Ω 电阻值的误差在 5 nΩ/Ω 以内。在 AIST 调整了石墨烯器件的电子密度,以恢复器件特性,使其能够在 4 T 至 6 T 的低磁通密度下运行。 此调整是通过 NIST 使用的功能化方法完成的,允许通过简单的退火对石墨烯 QHR 器件进行一致的可调性。这种方法取代了调整石墨烯以适应计量学的较旧且不太可预测的方法。里程碑式的成果表明,石墨烯可轻松用于在许多国家计量机构之间进行电阻比较测量。索引术语 — 量化霍尔电阻、外延石墨烯、低温电流比较器、电子密度、标准电阻
摘要 — 将美国国家标准与技术研究所 (NIST) 生产的几种石墨烯量化霍尔电阻 (QHR) 器件与美国国家先进工业科学与技术研究所 (AIST) 的 GaAs QHR 器件和 100 Ω 标准电阻进行了比较。100 Ω 电阻与石墨烯 QHR 器件的测量值与通过 GaAs 测量获得的 100 Ω 电阻值的误差在 5 nΩ/Ω 以内。在 AIST 调整了石墨烯器件的电子密度,以恢复器件特性,使其能够在 4 T 至 6 T 的低磁通密度下运行。 此调整是通过 NIST 使用的功能化方法完成的,允许通过简单的退火对石墨烯 QHR 器件进行一致的可调性。这种方法取代了调整石墨烯以适应计量学的较旧且不太可预测的方法。里程碑式的成果表明,石墨烯可轻松用于在许多国家计量机构之间进行电阻比较测量。索引术语 — 量化霍尔电阻、外延石墨烯、低温电流比较器、电子密度、标准电阻
注意:用户可以根据应用要求将当前的感官电阻放在VBU或VBAT上。SC8905不断调节设置值时的感应电阻电流,该电阻由内部寄存器和CSO电阻决定。请参阅CC充电/trick滴/输出当前设置规范的限制。
• 用 24 Vdc 为端子 11 (+) 和 12 (-) 上的数字中继器供电,观察绿色 LED 灯是否亮起。 • 将 S1 键置于位置 II,将 S3 键置于位置 I,如图 32 所示。 • 激活传感器并通过黄色 LED 验证负载通电。 • 用电压表测量电阻上的电压,该电压必须介于 20 到 24V 之间。 • 停用传感器并验证输出停用及其黄色 LED。 • 测试缺陷检测,将两根传感器线短路,并观察电阻器和黄色 LED 断电,但缺陷的红色 LED 亮起。 • 现在测试现场电缆断裂,打开传感器线并观察电阻器和其黄色 LED 立即断电以及指示缺陷的红色 LED 信号。
技术数据: 1 工作电压:DC 12/24V 2 额定电流:8A(12V); 4A(24V) 3 尺寸:参见图纸。滚轮或转子 4 功能:该变速控制器可以控制电阻器任意调节风量。12/24V 与电阻器相同,无需添加其他部件。我们可以根据客户要求制作滚轮。5 外壳材料:黑色 ABS 6 红、黑、蓝和黄线,30cm 7 适用于加热器。加热器变速控制器
摘要:本文介绍了使用被动细胞平衡技术对锂电池组的系统建模和模拟。在MATLAB/SIMULINK环境中对57.6 V,27 AH的电池组进行了建模和模拟。每当串联连接细胞模块的电荷状态(SOC)的差异超过SOC的0.1%的阈值时,平衡算法就会触发。平衡算法还提供了分流电阻值的最佳值,该值是根据为平衡细胞和最小功率消耗所花费的时间选择的。获得了平衡时间和功耗与电阻值的图。将4Ω的分流电阻作为一组电阻的最佳值,因为其平衡时间为9636.9s,功率损耗为26.2462W是令人满意的。使用恒定充电恒电压(CC-CV)方法在充电阶段分析了电池组的性能,并在20A的恒定电流下放电。
CW2017 是一款超紧凑、系统侧或电池组侧、无感测电阻的电量计 IC,适用于手持和便携式设备中的锂离子 (Li+) 电池。CW2017 跟踪 Li+ 电池的运行条件并执行最先进的算法来计算不同电池化学系统(LiCoOx、聚合物锂离子、LiMnOx 等)的相对充电状态 (SOC)。CW2017 包括一个 14 位 Sigma-Delta ADC、一个精密电压基准和内置 NTC 偏置电路。该 IC 允许用户省去通常占用很大 PCB 面积的昂贵电流感测电阻。如果电池 SOC 水平或芯片测量或主机报告的温度达到预编程阈值,IC 会发出中断警报信号。CW2017 集成了 ID 电阻感测功能。它也可以用作备用感测端口。 CW2017 使用 2 线 I2C 兼容串行接口,该接口可在标准 (100kHz) 模式或快速 (400kHz) 模式下运行。
CW2017 是一款超紧凑、系统侧或电池组侧、无感测电阻的电量计 IC,适用于手持和便携式设备中的锂离子 (Li+) 电池。CW2017 跟踪 Li+ 电池的运行条件并执行最先进的算法来计算不同电池化学系统(LiCoOx、聚合物锂离子、LiMnOx 等)的相对充电状态 (SOC)。CW2017 包括一个 14 位 Sigma-Delta ADC、一个精密电压基准和内置 NTC 偏置电路。该 IC 允许用户省去通常占用很大 PCB 面积的昂贵电流感测电阻。如果电池 SOC 水平或芯片测量或主机报告的温度达到预编程阈值,IC 会发出中断警报信号。CW2017 集成了 ID 电阻感测功能。它也可以用作备用感测端口。 CW2017 使用 2 线 I2C 兼容串行接口,该接口可在标准 (100kHz) 模式或快速 (400kHz) 模式下运行。