在本文中,使用了预先训练的FastAI CNN模型的RESNET152体系结构。RESNET152体系结构被视为基本模型,并通过修改后3层进行改进。密集的层,然后使用新层改善了软磁层和二进制跨膜片层。在此之后,改进了RESNET152深度学习模型,对从Kaggle和Brats2015收集的2个不同的脑数据集进行了培训。进行模型的微调。在DataSet-253和DataSet-205上进行验证时,改进模型的精度分别为97%和96%。与其他深度学习模型相比,改进的模型使用2个不同的大脑MRI数据集可获得最佳结果。图中给出了精度百分比比较。15下面。应用于增加MR
猫型心肌病(HCM)是一种常见的心脏病,影响了所有猫的10-15%。带有HCM的猫表现出呼吸困难,嗜睡和心杂音;此外,猫HCM也可能导致猝死。在各种方法和指数中,射线照相和超声检查是猫HCM诊断的黄金标准。但是,仅使用射线照相就只能达到75%的精度。因此,我们使用231个猫(143 hcm和88 normal)的腹侧放射线图培训了五个残留体系结构(Resnet50V2,Resnet152,InceptionResnetV2,MobilenEtV2和Xception),并研究了用于诊断Finely Finely HCM HCM的最佳体系结构。为了确保数据的普遍性,X射线图像是从5个独立机构获得的。此外,测试中使用了42张图像。测试数据分为两个;在预测分析中使用了22片射线照相图像,并在评估窥视现象和投票策略的评估中使用了20个X射线照相图像。结果,所有模型的精度> 90%; RESNET50V2:95.45%; Resnet152:95.45; InceptionResnetv2:95.45%; Mobilenetv2:95.45%和Xception:95.45。此外,将两种投票策略应用于五个CNN模型; SoftMax和多数投票。因此,SoftMax投票策略在合并的测试数据中达到了95%的精度。我们的发现表明,使用残留体系结构的自动学习系统可以帮助兽医放射科医生筛选HCM。
在医学领域,由于患者人群中肿瘤的稀有性,对图像的可靠检测和分类仍然是巨大的挑战。在异常情况下检测肿瘤病例的能力对于确保及时干预和改善患者预后至关重要。这项研究通过利用深度学习(DL)技术来检测和分类具有挑战性的情况下的脑肿瘤来解决这一挑战。本研究采用深度学习(DL)技术来应对这一挑战,利用来自国家脑图实验室(NBML)的数据集,其中包括约81例患者,其中包括30例患者,其中包括30例肿瘤病例和51例正常情况。我们的方法包括两个阶段:检测和分类。在第一阶段,广泛的数据预处理模拟现实世界的条件,调整数据集以反映每种1例肿瘤病例的9例正常情况的异常分布。接下来,对Yolov8n模型进行了微调以检测肿瘤区域。为了评估该模型在患者水平上的表现,我们引入了患者对患者(PTP)度量,该指标评估了在整个人群中识别肿瘤病例的能力,而不是测量单个切片的性能。这种方法提供了模型可靠性更临床相关的评估。该模型的F1得分为0.98,PTP-F1得分为1.0,正确分类了测试人群中的所有患者。在分类阶段,数据有效的图像变压器(DEIT)用于从RESNET152教师模型中提取视觉变压器(VIT)模型。DEIT被选为其在小数据集上有效训练的能力。蒸馏分类器在20个时期后达到0.92,而RESNET152模型达到0.97,尽管计算成本较高,但达到了0.97。这项研究表明,在具有挑战性的情况下对脑肿瘤的可靠检测和分类方面有了显着的进步,从而提供了实用应用的潜力。
摘要 - 这项研究提议实施基于卷积神经网络的面部情感识别系统,以实时检测情绪,旨在优化工作场所环境并提高组织生产力。评估了六种深度学习模型:标准CNN,Alexnet,VGG16,InceptionV3,Resnet152和Densenet201,Densenet201实现了最佳性能,精度为87.7%,召回96.3%。该系统显示关键绩效指标(KPI)的显着改善,包括减少数据收集时间的72.59%,诊断时间降低了63.4%,工作满意度增加了66.59%。这些发现突出了深度学习技术对工作场所情感管理的潜力,实现了及时的干预措施,并促进了更健康,更有效的组织环境。
摘要。本文介绍了用于图像识别的深度卷积神经网络训练的性能-能量权衡研究。使用配备 Nvidia Quadro RTX 6000 和 Nvidia V100 GPU 的系统测试了几种具有代表性且广泛采用的网络模型,例如 Alexnet、VGG-19、Inception V3、Inception V4、Resnet50 和 Resnet152。使用 GPU 功率上限,我们发现除了默认配置之外,还可以最小化三个不同的指标:能量 (E)、能量延迟积 (EDP) 以及能量延迟总和 (EDS),从而节省大量能源,EDP 和 EDS 的性能损失较低到中等。具体来说,对于 Quadro 6000 和最小化 E,我们获得了 28.5%–32.5% 的节能效果;对于 EDP,我们获得了 25%–28% 的节能效果,平均性能损失为 4.5%–15.4%;对于 EDS (k=2),我们获得了 22%–27% 的节能效果,平均性能损失为 4.5%–13.8%。对于 V100,我们发现平均节能效果为 24%–33%;对于 EDP,我们获得了 23%–27% 的节能效果,平均性能损失为 13%–21%;对于 EDS (k=2),我们获得了 23.5%–27.3% 的节能效果,平均性能损失为 4.5%–13.8%。
骨龄评估有多种用途。它可以帮助儿科医生预测生长、青春期开始、识别疾病,并评估缺乏适当身份证明的人是否是未成年人。这是一个耗时的过程,也容易出现观察者内差异,从而导致许多问题。本论文尝试通过使用不同的物体检测方法来检测和分割对评估具有解剖学重要性的骨骼,并使用这些分割的骨骼来训练深度学习模型来预测骨龄,从而改善和加快骨龄评估。使用了一个包含 12811 张婴儿至 19 岁人群的 X 射线手部图像的数据集。在第一个研究问题中,我们比较了三种最先进的物体检测模型的性能:Mask R-CNN、Yolo 和 RetinaNet。我们选择了性能最佳的模型 Yolo,以分割数据集中指骨的所有生长板。我们继续使用分割和未分割的数据集训练四种不同的预训练模型:Xception、InceptionV3、VGG19 和 ResNet152,并比较了性能。我们使用未分割和分割的数据集都取得了良好的结果,尽管使用未分割的数据集的性能略好。分析表明,通过增加腕骨、骨骺和骨干的生长板检测,我们可能能够使用分割数据集实现更高的准确率。性能最佳的模型是 Xception,使用未分割的数据集实现了 1.007 年的平均误差,使用分割的数据集实现了 1.193 年的平均误差。
糖尿病性视网膜病(DR)是糖尿病患者普遍存在的并发症,可能会导致视力障碍,这是由于视网膜上形成的病变。在高级阶段检测DR通常会导致不可逆的失明。通过眼科医生通过视网膜底面图像诊断DR的传统过程不仅是耗时的,而且还很昂贵。虽然经典的转移学习模型已被广泛用于计算机辅助检测DR,但其高维护成本可能会阻碍其检测EFFI效率。相比之下,量子传递学习对这一挑战的更有效解决方案。这种方法非常有利,因为它以启发式原则运作,使其对任务进行了高度优化。我们提出的方法利用这种混合量子传递学习技术来检测DR。为了构建我们的模型,我们利用Kaggle上可用的Aptos 2019失明检测数据集。我们采用RESNET-18,RESNET34,RESNET50,RESNET101,RESNET152和INCEPTION V3(预训练的经典神经网络)进行初始特征提取。在分类阶段,我们使用变分量子分类器。我们的混合量子模型显示出了显着的结果,RESNET-18的精度为97%。这表明,与量子机学习集成时,量子计算可以单独使用经典计算机来执行一定程度的功率和EFFI的任务。通过利用这些先进的技术,我们可以显着改善糖尿病性视网膜病的检测和诊断,从而使许多人免于失明的风险。
摘要 - 本研究提出了一个强大的脑肿瘤分类框架,首先是对 233 名患者的细致数据整理。该数据集包含各种 T1 加权对比增强图像,涵盖脑膜瘤、神经胶质瘤和垂体瘤类型。采用严格的组织、预处理和增强技术来优化模型训练。所提出的自适应模型采用了一种尖端算法,利用了自适应对比度限制直方图均衡化 (CLAHE) 和自适应空间注意。CLAHE 通过根据每个区域的独特特征调整对比度来增强灰度图像。通过注意层实现的自适应空间注意动态地为空间位置分配权重,从而增强对关键大脑区域的敏感性。该模型架构集成了迁移学习模型,包括 DenseNet169、DenseNet201、ResNet152 和 InceptionResNetV2,从而提高了其稳健性。 DenseNet169 充当特征提取器,通过预训练权重捕获分层特征。批量归一化、dropout、层归一化和自适应学习率策略等组件进一步丰富了模型的适应性,减轻了过度拟合并在训练期间动态调整学习率。技术细节(包括使用 Adam 优化器和 softmax 激活函数)强调了模型的优化和多类分类能力。所提出的模型融合了迁移学习和自适应机制,成为医学成像中脑肿瘤检测和分类的有力工具。它对脑肿瘤图像的细致理解,通过自适应注意力机制的促进,使其成为神经成像计算机辅助诊断的一项有希望的进步。该模型利用具有自适应机制的 DenseNet201,超越了以前的方法,实现了 94.85% 的准确率、95.16% 的精确率和 94.60% 的召回率,展示了其在具有挑战性的医学图像分析领域提高准确率和泛化的潜力。关键词:NeuroInsight、脑肿瘤分类、医学影像、自适应深度学习、自适应框架。1. 简介通过整合最先进的技术,特别是在深度学习领域,医学诊断领域经历了前所未有的进步。这一进步的一个显著例子是使用自适应深度学习进行脑肿瘤分期分类,这是一种新颖的方法,它不仅利用了深度学习的能力,而且还能动态适应脑肿瘤分期固有的复杂性,在诊断中呈现出更高的精确度和个性化水平。在医疗保健领域,脑肿瘤因其表现形式多样、严重程度各异而成为一项艰巨的挑战。传统的肿瘤分类方法经常难以准确描述肿瘤分期的细微细节。在此背景下引入自适应深度学习标志着一种范式转变,它赋予诊断过程一种自学习机制,该机制会随着遇到的每个数据集不断发展和完善自身[1] – [4]。这种开创性方法的基础要素是一种先进的深度学习算法,其特点是动态和自适应性。自适应深度学习方法与典型的深度学习模型不同,它不断修改其参数以响应输入数据的独特特征,而不是依赖于固定的、预定的架构。这种自适应能力确保了对与脑肿瘤分期相关的复杂性的更细致入微和针对具体情况的理解[5] – [7]。
