摘要:人工智能(AI)的扩散导致了生物识别安全性和数字内容验证的显着进步,但它也实现了复杂的威胁,例如欺骗攻击和深层操纵。安全的视觉项目通过将Mobilenet和Resnext模型集成到统一系统中来解决这些双重挑战。Mobilenet用于实时反欺骗检测,专注于眼睛眨眼和微妙的面部运动等可感性提示,而Resnext则专门识别特定于深层特异性人工制品,包括纹理不一致和照明异常。通过对ASVSPOOF,FaceForensics ++和DeepFake检测挑战(DFDC)等各种数据集进行培训,该系统可实现强大的性能和概括性。集成体系结构提供高精度(97.8%)和实时处理功能(每帧50ms),使其适合于生物识别访问控制,在线身份验证和媒体真实性验证中的应用。本文讨论了未来增强功能的方法,性能指标和潜力,包括多模式集成和持续学习框架,以确保系统随着新兴威胁而演变。
神经网络使最先进的方法能够在目标检测等计算机视觉任务上取得令人难以置信的效果。然而,这种成功很大程度上依赖于昂贵的计算资源,这阻碍了拥有廉价设备的人们欣赏先进的技术。在本文中,我们提出了跨阶段部分网络(CSPNet)来从网络架构的角度缓解以前的工作需要大量推理计算的问题。我们将问题归因于网络优化中的重复梯度信息。所提出的网络通过整合网络阶段开始和结束的特征图来尊重梯度的变化,在我们的实验中,在 ImageNet 数据集上以相同甚至更高的精度将计算量减少了 20%,并且在 MS COCO 目标检测数据集上的 AP 50 方面明显优于最先进的方法。 CSP-Net 易于实现且足够通用,可以应对基于 ResNet、ResNeXt 和 DenseNet 的架构。
网络压缩由于能够减少推理过程中的内存和计算成本而得到了广泛的研究。然而,以前的方法很少处理残差连接、组/深度卷积和特征金字塔网络等复杂结构,其中多层的通道是耦合的,需要同时进行修剪。在本文中,我们提出了一种通用的通道修剪方法,可应用于各种复杂结构。特别地,我们提出了一种层分组算法来自动查找耦合通道。然后,我们基于 Fisher 信息推导出一个统一的度量来评估单个通道和耦合通道的重要性。此外,我们发现 GPU 上的推理加速与内存 2 的减少而不是 FLOPs 的减少更相关,因此我们采用每个通道的内存减少来规范重要性。我们的方法可以用来修剪任何结构,包括具有耦合通道的结构。我们对各种骨干网络进行了广泛的实验,包括经典的 ResNet 和 ResNeXt、适合移动设备的 MobileNetV2 以及基于 NAS 的 RegNet,这些实验都针对尚未得到充分探索的图像分类和对象检测。实验结果验证了我们的方法可以有效地修剪复杂的网络,在不牺牲准确性的情况下提高推理速度。
摘要:阿尔茨海默氏病(AD)是最普遍的神经退行性疾病,引起了人们的疾病,并对中年和老年人构成了显着的健康风险。大脑磁共振成像(MRI)是AD最广泛使用的诊断方法。但是,收集具有高质量注释的能力大脑成像数据是一项挑战。弱监督学习(WSL)是一种机器学习技术,旨在从有限或低质量的注释中学习有效的功能表示。在本文中,我们提出了一个基于WSL的深度学习(DL)框架(ADGNET),该框架由具有注意机制的骨干网络和同时图像分类和图像重建的任务网络组成,以使用有限的注释来识别和分类AD。ADGNET基于六个评估指标(Kappa,敏感性,特定型,精度,准确性,F1分数)在两个大脑MRI数据集(2D MRI和3D MRI数据)上实现出色的性能,并使用两个数据集中的Babels仅使用20%的标签。ADGNET的F1得分为99.61%,灵敏度为99.69%,表现优于两个最先进的模型(Resnext WSL和SIMCLR)。所提出的方法代表了一种潜在的基于WSL的计算机辅助诊断方法,用于临床实践中的AD。