摘要。在用于图形计量的相移干涉仪性能评估中,高度响应或高度传递函数很少被考虑,因为在大多数应用中,测量的是光滑表面,并且只关注最低的空间频率。对于不确定度较低的测量,重要的是要了解高度响应作为被测表面的空间频率内容的函数,特别是当它包含频率位于干涉仪空间频率通带高端的形状误差分量时。使用一个直径为 140 毫米的图案区域镜子来评估光谱响应,该镜子由几个具有不同空间频率的子图案组成。我们的目标是开发一种方法,以有效地映射相移干涉仪圆形视场上的光谱响应。描述了一种表示光谱响应对干涉仪视场依赖性的新方法。 © 2010 光学仪器工程师协会。� DOI:10.1117/1.3488052 �
摘要 全固态电池是有前途的高能量密度存储设备。为了在不进行昂贵的反复试验的情况下优化其性能,提出了微观结构解析连续模型来了解电极结构对其性能的影响。我们讨论了固态电池微观结构解析建模的最新进展。虽然并非所有实验观察到的现象都能准确表示,但这些模型普遍认为固体电解质的低离子电导率是一个限制因素。最后,我们强调需要微观结构解析的降解机制模型、制造效应和人工智能方法,以加快全固态电池电极界面的优化。
我们展示了单层和少层石墨烯薄片的拉曼光谱测量结果。我们使用扫描共焦方法收集具有空间分辨率的光谱数据,这样我们就可以直接将拉曼图像与扫描力显微照片进行比较。单层石墨烯可以通过 D' 线的宽度与双层和少层石墨烯区分开来:单层石墨烯的单个峰分裂为双层的不同峰。这些发现是使用基于电子结构和声子色散的从头计算的双共振拉曼模型来解释的。我们研究了 D 线强度,发现薄片内没有缺陷。源自边缘的有限 D 线响应可以归因于缺陷或平移对称性的破坏。
。cc-by-nc-nd 4.0国际许可证。根据作者/资助者,它是根据预印本提供的(未经同行评审的认证),他已授予Biorxiv的许可证,以在
胞嘧啶DNA甲基化参与了转座元件(TE)沉默,烙印和X染色体灭活。植物DNA甲基化由Met1(Mammalian DNMT1),DRM2(哺乳动物DNMT3)和两个植物特异性DNA甲基转移酶,CMT2和CMT3介导(Law and Jacobsen,2010年)。DRM2通过植物特异性RNA指导的DNA甲基化(RDDM)途径建立了植物中的从头DNA甲基化,依赖于两个DNA依赖性RNA聚合酶,POL IV和POL V(Gallego-Bartolome et al。木薯的DNA甲基团先前已根据其单倍体倒塌的基因组进行了记录(Wang等,2015)。由于木薯基因组是高度杂合的,因此单倍型折叠基因组的DNA甲基团错过了甲基体的许多特征。With the development of long-read sequencing and chromosomal conformation capture techniques, haplotype-resolved genomes are available for highly heterozygous genomes (Mansfeld et al., 2021 ; Qi et al., 2022 ; Sun et al., 2022 ; Zhou et al., 2020 ), which provides high-quality reference genomes facilitating studies of haplotype-resolved DNA甲基组。为了剖析木薯的单倍型分辨DNA甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基(TME7和TME204)在两个单倍型基因组分辨率(TME7和TME204)中进行了研究。 Al。,2021;测序读数分别映射到不同的单倍型,允许零不匹配和一个最佳命中,这允许分离属于不同单倍型的读数。总体而言,我们发现尽管使用了WGB和EM-SEQ方法,但两种单倍型具有相似的整体
通过 Perturb-DBiT 进行空间分辨体内 CRISPR 筛选测序 Alev Baysoy 1,11 , 田小龙 1,2,11 , Feifei Zhang 2,11 , Paul Renauer 2,11 ,zhiliang Bai 1 , Hao Shi 3 ,Haikuo Li 1 , Bo Tao 1 , Mingyu Yang 1 , Archibald Enninful 1 , Fu Gau 1 , 王广川 2 , 张万秋 4 , Thao Tran 4 , Nathan Heath Patterson 4 , 包硕珍 1 , 董传鹏 2 , 单鑫 2 , 钟美 9 , Sherri Rankin 3 , Cliff Guy 3 , 王岩 3 , Jon P. Connelly 5 , Shondra M. Pruett-Miller 5 , 池洪博 3 , 陈思迪2,7* , Rong Fan 1,6,8,10,12 * 1 耶鲁大学生物医学工程系,美国康涅狄格州纽黑文 2 耶鲁大学医学院遗传学系,美国康涅狄格州纽黑文 3 圣犹达儿童研究医院免疫学系,美国田纳西州孟菲斯 4 Aspect Analytics NV,比利时亨克
有两种改善特定城市Cas12a和Cas13a核酸酶的常用方法。是工程师CRRNA,包括将合成不匹配引入crrna的间隔域,设计发夹 - 间隔者CRRNA,以及用2 0 -O -methyl修改CRRNA。21 - 25然而,必须仔细设计不匹配的CRRNA中的数量和位置,以减少无靶标的效果,而无需牺牲CAS蛋白的裂解活性。22,23更重要的是,使用发夹蛋白 - 间隔者CRRNA和2 0-O-methyl modi crrna仅将原始CRISPR/CAS系统的特定城市提高了2至3倍。24,25另一种方法是高级工程cas蛋白。26 - 28,由于复杂的蛋白质表达和筛选过程,它仍然与之合作。此外,所有这些策略旨在优化CRISPR/CAS系统的不同组成部分,而无需克服裂解效率和特定城市之间的基本交易。因此,可以显着改善特定城市的策略对于它们的实际应用(例如生物传感)非常需要,因为它们将避免误解积极的结果。dnazymes(也称为脱氧核酶,DNA酶或催化DNA),是单链DNA分子,具有
在过去十年中,单细胞基因组学技术已经实现了可扩展的细胞类型特异性特征分析,这大大提高了我们研究异质组织中细胞多样性和转录程序的能力。然而,我们对基因调控机制或控制细胞类型之间相互作用的规则的理解仍然有限。单细胞表观基因组学和空间分辨转录组学等新的计算流程和技术的出现为探索生物变异的两个新方向创造了机会:细胞内在的细胞状态调控以及细胞之间的表达程序和相互作用。在这里,我们总结了这些领域中最有前途和最强大的技术,讨论了它们的优势和局限性,并讨论了分析这些复杂数据集的关键计算方法。我们重点介绍了数据共享和集成、文档、可视化和结果基准测试如何有助于神经科学的透明度、可重复性、协作和民主化,并讨论了未来技术开发和分析的需求和机会。
摘要:对气候的精确模拟始终至关重要,同时也是一个挑战。本研究基于粗细模型的概念,提出一种利用贝叶斯网络对全局分辨能量平衡 (GREB) 模型进行改进的方法。改进方法在以 GREB 模型为全局框架的基础上,构建了动力学模型与统计模型相结合的粗细结构,并利用基于 GREB 模型内部气候变量相互关系构建的贝叶斯网络实现局部优化。为了客观地检验改进方法的性能和推广应用,将该方法应用于1985—2014年美国国家环境预测中心(NCEP)和美国国家大气研究中心(NCAR)提供的3.75°×3.75°全球数据集,对地表温度和大气温度的模拟。结果表明,改进模型比原始GREB模型表现出更高的平均精度和更低的空间分异,并且在长期模拟中具有良好的稳健性。该方法解决了GREB模型在局部区域由于过度依赖边界条件和初始条件,以及缺乏完全可用的观测数据而导致的精度问题。此外,该模型还克服了由于气候包含项不明确导致统计模型稳健性较差的挑战。因此,改进方法为可靠、稳定的气候模拟提供了一种有希望的方法。