摘要:纳米级机械谐振器引起了信号处理,传感器和量子应用的广泛关注。纳米结构中超高Q声腔的最新进展允许与各种物理系统和高级功能设备进行牢固的相互作用。那些声学腔对外部扰动高度敏感,由于这些响应是由几何和材料确定的,因此很难控制这些共振特性。在本文中,我们通过在光力学系统中混合高阶Lorentzian响应来演示一种新型的声学共振调节方法。使用弱耦合的语音晶体声腔,我们实现了二阶和三阶洛伦兹响应的连贯混合,这能够具有与设备的声学耗散率相当的共振范围的带宽和峰值频率的微调和峰值频率。这种新颖的共振调节方法可以广泛应用于洛伦兹响应系统和光学机械,尤其是针对环境波动和制造误差的主动补偿。关键字:光子综合电路,硅光子学,声学效应,片上布里群散射,光学机械
一家大学医学成像多伦多,彼得·蒙克心脏中心,多伦多综合医院,多伦多大学,多伦多,多伦多,加拿大b华盛顿大学,美国华盛顿大学,c心脏病学,斯特伦博斯大学,南非D罗马大学,意大利G Radboud大学医学中心,荷兰N安特卫普大学医院和比利时安特卫普大学,放射学,圣心lier,比利时J医院巴罗斯·卢科·特鲁多 - 临床圣玛丽亚,圣地亚哥,圣地亚哥,智利K心血管成像部,美国德克萨斯州休斯顿,美国纽约大学 - 纽约大学,美国纽约,美国纽约州纽约市,美国,美国,美国,美国,美国纽约州纽约大学,美国,美国纽约州医学院,boston儿童医院,brigham and brigham and Hospition,brofam birov nimak of brove and boston boston,美国,美国,美国,美国。英国伦敦皇后大学伦敦皇后大学o英国心血管成像教授,英国利兹大学,英国
简介。- 与非客体拓扑的电子周期性结构有关的研究,具有平板光谱(或平板)的系统的物理学最近引起了很多关注[1,2]。平板系统的重要特征之一是它们的状态密度随系统的大小而增长,与常规晶格相比,状态的密度通常保持有限。平板中状态的增强密度使人们可以在电子系统[3,4]和光子学[5,6]中实现强烈的相互作用,并应用于量子网络[7,8],芯片单光子上的应用[9]和纳米射击器[9]和Nanolasers [10],以及紧凑的免费电子光源[11]。重要的是,大多数先前对扁平频段的研究都涉及具有工程对称性和耦合的系统,这些系统在真实空间[12]或傅立叶空间[13]中均短[13],由紧密结合模型或耦合模式理论描述。然而,最近的电子和光子Moir'E超晶格的界线表明,在更通用的环境中,涉及与复杂单位细胞的晶格中许多州之间相互作用的参数细胞可能会从参数细胞中出现[14-21]。虽然板带的物理学仍然是一个超出短程耦合近似之外的一个空旷的问题,但针对魔术角双层石墨烯开发的最小有效的紧密结合模型表明,强度和弱点的状态之间的微调耦合
磁共振光谱(MRS)是一种无创技术,可用于测量组织中不同化学成分的浓度。该技术基于与磁共振成像(MRI)相同的物理原理,以及原子内部磁场和特定核之间能量交换的检测。使用MRI,通过根据发射信号的强度分配不同的灰色值,通过分配不同的灰色值,将这种能量交换以射频信号测量。MRI和MRS之间的主要区别在于,在MRI中,发射的射频基于核的空间位置,而MRS则检测到扫描组织的化学成分。MRS产生的信息以图形方式显示为与所检测到的各种化学物质一致的峰值的频谱。MRS可以作为MRI的辅助手术。首先生成MRI图像,然后在感兴趣的位点,在体素水平(3维体积X像素)处开发MRS光谱。感兴趣的体素(VOI)通常是一个立方体或矩形棱镜,尺寸像素的体积为1至8 cm。MRI提供了大脑的解剖图像,MRS提供了与潜在动态生理学相关的功能图像。MRS可以使用现有的MRI设备执行,并通过所有新的MRI扫描仪中提供的其他软件和硬件进行修改。扫描仪中的成像时间增加了15至30分钟。
摘要 脑肿瘤具有破坏关键脑功能和表现出神经症状的潜力,构成重大威胁,值得高度关注。这些肿瘤的评估依赖于各种成像方法,包括计算机断层扫描 (CT)、磁共振成像 (MRI) 和超声。特别是,脑部 MRI 因其能够提供对脑结构和组织异常的重要见解而闻名。这项研究利用技术的变革性影响,特别是人工智能 (AI) 和深度学习 (DL),来应对这一挑战。新方法涉及卷积神经网络 (CNN) 与 VGG19 和 ResNet 的迁移学习的集成。主要目标是将脑肿瘤分为四个不同的类别:脑膜瘤、神经胶质瘤、垂体腺瘤和无肿瘤病例。单独的 CNN 模型实现了令人印象深刻的 97.23% 的准确率。然而,当与 VGG19 和 ResNet 集成时,准确率飙升至更高的 98.26%。这种创新的技术融合对于提高脑肿瘤分类的准确性具有巨大的希望,有可能重塑神经影像和医疗保健的格局。
证据摘要和分析:磁共振成像 (MRI) 是一种经过验证且行之有效的脑部评估和评价成像方式。脑部 MRI 是目前最灵敏的技术,因为它能够高度灵敏地利用组织固有的对比度差异,而这种差异是磁弛豫特性和磁化率变化的结果。MRI 是一项快速发展的技术,持续的技术进步将继续改善脑部疾病的诊断。本实践参数概述了执行高质量脑部 MRI 的原则。脑部 MRI 的适应症包括但不限于:脑实质、脑膜或颅骨的肿瘤性疾病或其他肿块或肿块样疾病、血管疾病(缺血、梗塞、疾病、畸形异常、先天性疾病、创伤、出血、疾病(炎症、自身免疫、感染、内分泌、评估(脑神经、伴有相关神经系统发现的头痛、疑似脑结构异常)、癫痫、治疗随访和颅内压升高(ACR-ASNR-SPR,2019)。
这些服务可能包含在所有 Medica 计划中,也可能不包含在内。保险范围受适用联邦或州法律的要求约束。请参阅会员的计划文件,了解其他具体保险范围信息。如果此一般信息与会员的计划文件存在差异,则将以会员的计划文件为准来确定保险范围。对于 Medicare、Medicaid 和其他政府计划,除非这些计划要求不同的保险范围,否则将适用此政策。会员可以拨打会员身份证上列出的电话号码联系 Medica 客户服务部,以更具体地讨论他们的福利。有疑问的提供商可以拨打免费电话 1-800-458-5512 联系 Medica 提供商服务中心。Medica 保险政策不是医疗建议。
指南•本政策未证明福利的福利或授权,这是由每个个人保单持有人条款,条件,排除和限制合同指定的。它不构成有关承保或报销/付款的合同或担保。自给自足的小组特定政策将在小组补充计划文件或个人计划决策中指导其他情况时取代该一般政策。•最重要的是通过编码逻辑软件适用于所有医疗主张的编码编辑,以评估对公认国家标准的准确性和遵守。•本医疗政策仅用于指导医疗必要性,并解释用于协助做出覆盖决策和管理福利的正确程序报告。范围X Professional X设施需要在选修课设置中执行的那些程序需要事先授权。急诊室,设施观察设置或住院设置不需要事先授权。描述磁共振成像(MRI)是一种放射学技术,用于放射学以形成解剖学的图片和人体的生理过程。MRI是一种无创成像技术,不涉及暴露于辐射。MRI扫描仪使用强磁场,磁场梯度,无线电波和计算机来生成内部器官和结构的详细横截面图像。磁铁产生了一个强的磁场,该磁场从体内的脂肪和水分子中的质子中对齐氢原子的质子,然后将其暴露于无线电波束上。这旋转身体的各种质子,并产生一个微弱的信号,该信号由MRI扫描仪的接收器部分检测到。一台计算机处理的接收器信息,该信息产生图像。对于某些MRI检查,静脉注射(IV)药物(例如基于Gadolinium的对比剂(GBCA))用于改变MR图像的对比度。基于Gadolinium的对比剂是稀土金属,通常是通过手臂中的IV给出的。对比成像应谨慎使用3-5慢性肾脏疾病的患者。进行人体的MR成像进行评估,而不是全包列表:
晶格共振是由周期性纳米结构阵列支持的集体模式。它们源自阵列各个成分的局部模式之间的相干相互作用,对于由金属纳米结构制成的系统,这通常对应于电偶极等离子体。不幸的是,基本的对称性原因使得二维 (2D) 电偶极子排列无法吸收超过一半的入射功率,从而对传统晶格共振的性能造成了很大的限制。这项工作引入了一种克服这一限制的创新解决方案,该解决方案基于使用由包含一个金属和一个介电纳米结构的单元格组成的阵列。使用严格的耦合偶极子模型,可以证明该系统可以支持两个独立的晶格共振,分别与纳米结构的电偶极子和磁偶极子模式相关。通过调整阵列的几何特性,这两个晶格共振可以在光谱域中精确对齐,从而导致入射功率的全部吸收。这项工作的结果为合理设计能够产生完美吸收的晶格共振阵列提供了清晰而又普遍的指导,从而充分利用这些模式的潜力,用于需要有效吸收光的应用。
作为图像处理的一种重要方法,图像差异可以使目标的边缘检测能够实现对象特征和信息压缩的识别,并且可以通过光学信息技术来提高计算速度。传统的光学图像差异方法主要依赖于使用经典4F系统的空间光谱过滤,而某些工作则集中在1D或单向之间。直到近年来,跨境的快速发展才促进了图像不同的方法。在这项工作中,基于硅空心砖电介质谐振元脉冲的发射光场演示了拉普拉斯操作设备。可以通过刺激元图支持的角度选择性的环形偶极子(TD)共振来获得光拉拉普拉斯操作所需的光传递函数(OTF)。这个空心的硅砖块不仅实现2D二阶检测,而且具有接近0.4的数值光圈,并且可以直接集成成像系统,并且可以直接集成。此类MetadeVice可能可能应用于光学传感,显微镜,机器视觉,生物医学成像等的领域。