1阿姆斯特丹大学和阿姆斯特丹癌症中心实验与分子医学中心,阿姆斯特丹UMC,1105 AZ Amsterdam,荷兰; m.elmandili@amsterdamumc.nl(M.E.M.); c.a.spek@amsterdamumc.nl(C.A.S.)2阿姆斯特丹大学和癌症中心的实验肿瘤学和放射生物学实验室,阿姆斯特丹,阿姆斯特丹UMC,荷兰阿姆斯特丹1105年; M.F.Bijlsma@amsterdamumc.nl 3 on Code Institute,1105 AZ Amsterdam,荷兰4 Tongji 4 Tongji药学院,华盛顿大学瓦济恩大学科技大学,武汉430030,中国; kongl@hust.edu.cn(L.K.); a.kros@chem.leidenuniv.nl(又称)5实验性临床化学实验室,荷兰阿姆斯特丹1105 AMC临床化学系实验室; r.nieuwland@amsterdamumc.nl 6 Vesicle观察中心,阿姆斯特丹UMC,位置AMC,1105 AZ Amsterdam,荷兰 *通信:E.J.Slapak@amsterdamumc.nl†这些作者分享高级作者。
简介建筑环境在减少温室气体排放中起着关键作用,因为它对全球总能源消耗的影响很大。拥有全球总能源消耗的近32%,该建筑部门影响了全球温室气体排放(19%)和ELEC TRIC TRIC能源消耗(51%)的显着影响(IPCC 2014);此外,这些数字在高度发达国家中,显着增加了总能量造成的40%(IEA 2016)。在美国,与住宅和商业建筑有关的能源消耗已从1980年的33.7%(美国能源部2012)提高到2019年的40%(美国EIA 2020年);在欧盟登记了类似的价值,在欧盟,建筑部门占总能源消耗的近41%(Rousselot Marie and Pollier 2018),而在中国,百分比较低(近20%),这要归功于不同比率所得能源价格(CAO,DAI和LIU 2016)。许多研究(Chua等人2013)强调,在开发国家中,工业和住宅建筑物总能源消耗的几乎一半与供暖通气和空调(HVAC)系统有关,这些系统的消耗严格取决于enve损失(ng,persily,persily and emmerich 2014)和热量增长(Elssland,peksland,peksland,peksland,peksland,peksland,peksland,peksland,peksen and weietsch and wiel,
通过国家行动计划建立一个没有性别暴力的加拿大意味着要改变这些制度,以便它们更好地为幸存者服务,同时更有效、更持续地对暴力行为进行负面制裁。
背景与目的:顺铂-紫杉醇 (TP) 联合化疗作为多种癌症的一线治疗手段,因其在肿瘤内蓄积不充分及非特异性分布导致的严重副作用而受到阻碍。本研究旨在探索 TMTP1 修饰的顺铂和紫杉醇前药共载纳米药物是否能通过主动和被动的肿瘤靶向蓄积和控制药物释放来改善宫颈癌化疗并减轻其副作用。方法:制备具有主动靶向肿瘤和控制药物释放能力的 TDNP 来共同递送顺铂和紫杉醇前药。研究其特性,包括粒径、表面 zeta 电位、稳定性和肿瘤微环境 (TME) 依赖的药物释放曲线。在体内和体外评估细胞摄取、细胞毒性、肿瘤内药物蓄积、抗肿瘤作用和安全性分析。结果:氧化顺铂和连接在聚合物上的紫杉醇实现了超过80%的高载药率和TME依赖的缓释药物。此外,TMTP1修饰增强了TDNP的细胞摄取,进一步提高了TDNP的体外细胞毒性。在体内,在TMTP1的帮助下,TDNP在SiHa异种移植模型中表现出血液循环延长和蓄积增加。更重要的是,TDNP控制了肿瘤的生长,而没有危及生命的副作用。结论:我们的研究为宫颈癌的靶向化疗提供了一种新的TP共递送平台,有望提高TP的治疗效果,也可能应用于其他肿瘤。关键词:TME响应,靶向共递送,联合化疗,宫颈癌
全身化疗对三阴性乳腺癌 (TNBC) 有效,但通常伴有严重的副作用。本文,我们报告了一种针对促黄体激素释放激素 (LHRH) 受体且对肿瘤微环境有响应的纳米颗粒系统,可选择性地将化疗药物递送至 TNBC 细胞。该递送系统(称为“LHRH-DCM”)包含聚乙二醇和树枝状胆酸作为胶束载体、可逆胶束内二硫键作为氧化还原响应交联,以及合成的高亲和力 (D-Lys)-LHRH 肽作为靶向部分。LHRH-DCM 表现出高药物负载效率、最佳粒径、良好的胶体稳定性和谷胱甘肽响应性药物释放。正如预期的那样,LHRH-DCMs 通过受体介导的内吞作用更有效地内化到人 TNBC 细胞中,当用紫杉醇 (PTX) 封装时,对这些癌细胞的细胞毒性比非靶向对应物更强。此外,近红外荧光和核磁共振成像表明,LHRH-DCMs 促进了三种不同的乳腺癌动物模型中的肿瘤分布和有效载荷的渗透,包括细胞系来源的异种移植 (CDX)、患者来源的异种移植 (PDX) 和转基因乳腺癌。最后,体内治疗研究表明,在原位 TNBC 模型中,PTX-LHRH-DCMs 的表现优于相应的非靶向 PTX-DCMs 和目前的临床制剂 (Taxol®)。这些结果为 TNBC 的精准药物输送方法提供了新的见解。
中医(TCM)已被用来治疗中国的疾病约1000年。越来越多的证据表明,来自TCM的活性成分具有抗菌,抗增生性,抗氧化剂和凋亡诱导特征。然而,TCM的活性化合物的溶解度差和较低的生物利用度限制了临床应用。“纳米成型”(NFS)是新型和晚期药物传递系统。他们表现出改善药物溶解度和生物利用度的希望。尤其是“智能反应性NF”可以对目标部位的特殊外部和内部刺激做出响应,以释放荷载药物,这使他们能够控制靶组织内药物的释放。最近的研究表明,智能反应性NFS可以在疾病部位实现有目的的活性化合物,以增加患病组织中的浓度并减少不良反应的数量。在这里,我们回顾了“内部刺激 - 响应性NF”(基于pH和氧化还原状态)和“外部刺激 - 反应性NFS”(基于光和磁场),并专注于它们针对肿瘤和感染性疾病的TCM的活性化合物的应用,以进一步增强TCM在现代药物中的发展。
Hua Sang 1,2, † , Jiali Liu 2, † , Fang Zhou 2 , Xiaofang Zhang 2 , Jingwei Zhang 2 , Yazhong Liu 2 ,
“性别主流化不仅仅是计算房间里男女的数量。相反,性别主流化解决了项目,政策或过程的核心性别不平等,从而导致更大的性别响应行动。” 7性别主流化需要对男女的需求,优先级,角色和经验以及特定行动的整合来解决任何基于性别的不平等现象,从而对此分析产生了任何基于性别的不平等。8在本指南的上下文中,性别主流是将考虑性别的考虑到行动的各个方面。性别平等不是针对妇女的一种行动,而是系统地考虑各种男女的不同观点,经验和需求。
肿瘤组织和正常组织之间的物理和生化差异提供了有希望的触发因素,可用于设计用于癌症治疗的刺激响应性药物递送平台。合理设计的基于肽的超分子结构可以通过响应肿瘤微环境进行结构转换并实现抗肿瘤药物的控制释放。这篇小型综述总结了使用基于肽的材料设计内部触发响应性药物递送平台的最新方法。着重介绍了在酸性 pH、高温、高氧化电位和肿瘤组织中过表达的蛋白质下表现出刺激响应性结构转换的肽组装体。我们还讨论了当前基于肽的超分子递送平台对抗癌症的挑战。