即便如此,在计算机被广泛使用之前,生物学家偶尔也会忽略一个酶位点,从而对后续实验造成不幸的后果。当然,有许多程序可以将 DNA 序列转换成限制性图谱。然而,限制性图谱通常是在确定 DNA 序列之前构建的。这些图谱有时是确定 DNA 序列的准备工作,但它们的构建也可能是其他实验的第一步。请参阅 [6] 的综述。许多生物学家目前参与基因组分析。基因组是指生物体的所有 DNA。直到最近,最常分析的是长度为 100 到 10,000 个字母的小片段。为了组织基因组 DNA,一种方法是制作易于管理的小片段的限制性图谱,并利用这些图谱来确定片段的重叠,从而构建一个包含大部分基因组的图谱。Kohara el a/。 (41 已成功使用此策略绘制了 E. Cofi 的整个基因组图谱。Lander 和 Waterman 151 对这一过程进行了数学分析,他们的结论之一是图谱应尽可能详细,且区域应尽可能长。在构建限制性图谱时,会出现一些有趣而困难的数学问题。限制性图谱绘制有几种实验方法,每种方法都有其优点和缺点。在这里,我们将关注绘制两种限制性酶位点位置的问题。在实践中,构建这种图谱的一种方法是通过测量两种酶分别单独消化 DNA 以及然后两种酶一起消化 DNA 的片段长度(而不是顺序)。根据片段长度数据确定切口位置的问题称为双消化问题 (DDP)。在 Fitch 等人的论文中,图谱构建问题是通过集合分割问题来解决的:如何选择双消化片段的子集,其长度之和始终等于单消化片段长度。在 Goldstein 和 Waterman [3] 的论文中,他们通过旅行商问题的启发式算法——随机退火来解决该问题。DDP 限制映射有多难?Goldstein 和 Waterman 131 给出了一个答案,他们证明它是 NP 难的。因此必须使用启发式方法。虽然近似解似乎很容易获得,就像在旅行商问题的许多变体中一样,但这里的情况更成问题。分子生物学家希望找到正确的图谱,即与未知 DNA 序列一致的图谱。因此,通过某个任意目标函数衡量的“接近”最优的图谱可能远远不能被生物学家接受。映射算法应该生成尽可能小的图谱集,这些图谱可靠地包含生物学上正确的图谱。
本手册适用于所有 HQUSACE 元素、主要下属指挥部、地区、实验室和具有土木工程责任的现场作业活动。目标受众是工程师、地质学家和海洋学家,他们在沿海地区经验有限,需要更加熟悉沿海地区陆地、海洋和空中动态和复杂的相互作用所带来的许多独特且具有挑战性的问题。 “沿海区”大致定义为大陆架边缘与风暴波活动陆地边界之间的区域(将在第 2 章中详细讨论)。该定义适用于海洋、湖泊、水库和河口的边缘 - 实际上是受波浪影响的任何海岸。对于那些拥有丰富沿海实践经验的人,我们希望本手册能够提供复习材料和合适的参考资料,使他们能够应对更具挑战性的项目。
第 4 章 结构要求 设计应力 ................4-1 4-1 设计载荷 ...................4-2 4-1 稳定性分析 ...............4-3 4-3 路基状况及处理 ................4-4 4-5 地基排水和灌浆 .....................4-5 4-5 子结构功能和组件 .。。。。。。。。。。。。。。。。4-6 4-5 关节。。。。。。。。。。。。。。。。。。。。。。。4-7 4-6 止水带 。。。。。。。。。。。。。。。。。。。4-8 4-8 尾水管。。。。。。。。。。。.........4-9 4-8 螺旋箱 ..................4-10 4-8 发电机基座 ............4-11 4-10 球状涡轮机支架 ..........4-12 4-10 上部结构类型 .........4-13 4-10 上部结构-室内发电站 ...............4-14 4-11 进气口 ....。。。。。。。。。。。。。。。。。4-15 4-12 压力钢管和调压箱。。。。。..4-16 4-14 开关场结构 ...........4-17 4-16 钢筋 ..............4-18 4-17 结构钢的包覆 ...................4-19 4-17 挡土墙 ..............4-20 4-17
