自 20 世纪 80 年代以来,磁共振成像 (MRI) 就已用于研究发育中的胎儿大脑。然而,运动 (母亲和胎儿的) 一直是一个真正的挑战,限制了所获取图像的探索能力。在产前成像中,大脑的完整图像实际上是一堆 2D 切片。这些采集通常沿空间的三个轴进行,以便为放射科医生提供大脑的 3D“视觉”。切片的采集时间通常足够短 (少于 1 秒) 以“冻结”运动。因此,受试者的运动主要会引起几何失真伪影,即 2D 切片的堆叠不能直接反映大脑的 3D 几何形状。因此,有必要回顾性地估计运动以重建胎儿大脑的 3D 图像 [1]。胎儿数据重建的主要方法称为“切片到体积配准”的 SVR,该方法基于两个步骤:估计相对运动,然后融合数据 [2–4]。在产前成像的情况下,配准问题属于 2D-3D 类型,即我们必须估计切片和参考体积之间的运动。此参考体积也是我们想要重建的图像,因此是未知的。从对参考体积的首次估计,通过最小化当前切片和参考体积之间的对齐标准来估计每个切片的对齐。然后根据为每个切片估计的变换集重新计算后者。重建体积的质量在很大程度上取决于切片配准的质量。该过程以迭代方式重复,直到算法收敛。为了使这些方法对受试者的运动更具鲁棒性,已经开发了深度学习方法 [5,6]。然而,基于迭代重建的方法对于分析临床常规获取的大型图像数据库仍然不够稳健。因此,有必要检测出未对准的切片,以便不将它们包括在重建步骤中[7,8]或减少它们对重建的影响[9]。为了解决这个问题,一种解决方案是通过使用正交切片的交点并将它们的对应关系强加到 3D 交点 [10],将切片的运动校正与重建步骤完全分开。这种方法可以独立解决切片运动校正和 3D 体积重建的问题。在本文中,我们开发了一种使用机器学习方法来估计与未对准切片检测相关的切片运动的方法。所提出的方法称为 ROSI,即“基于正交切片交点的配准”。对合成和真实数据进行的评估表明,与 SVR 方法相比,所提出的方法更有吸引力。
背景:胃肠道出血 (GIB) 是急性心肌梗死 (AMI) 患者中一种严重且可能危及生命的并发症,严重影响住院期间的预后。早期识别高危患者对于减少并发症、改善结果和指导临床决策至关重要。目的:本研究旨在开发和验证基于机器学习 (ML) 的模型,用于预测 AMI 患者住院期间的 GIB,识别关键风险因素,并评估该模型在风险分层和决策支持方面的临床适用性。方法:进行了一项多中心回顾性队列研究,包括广东医科大学附属医院 1910 名 AMI 患者(2005-2024 年)。根据入院日期将患者分为训练组(n=1575)和测试组(n=335)。为了进行外部验证,1746 名 AMI 患者被纳入公开的 MIMIC-IV(重症监护 IV 医疗信息集市)数据库。倾向得分匹配根据人口统计学特征进行了调整,而 Boruta 算法则确定了关键预测因素。共使用 10 倍交叉验证训练了 7 种 ML 算法——逻辑回归、k 最近邻、支持向量机、决策树、随机森林 (RF)、极端梯度提升和神经网络。对模型的受试者工作特征曲线下面积、准确度、灵敏度、特异性、召回率、F 1 分数和决策曲线分析进行了评估。Shapley 加性解释分析对变量重要性进行了排名。Kaplan-Meier 生存分析评估了 GIB 对短期生存的影响。多元逻辑回归在调整临床变量后评估了冠心病 (CHD) 与住院 GIB 之间的关系。结果:RF 模型优于其他 ML 模型,在训练队列中实现 0.77 的受试者工作特征曲线下面积,在测试队列中实现 0.77,在验证队列中实现 0.75。关键预测因素包括红细胞计数、血红蛋白、最大肌红蛋白、血细胞比容、CHD 和其他变量,所有这些变量都与 GIB 风险密切相关。决策曲线分析表明 RF 模型在早期风险分层方面的临床应用。Kaplan-Meier 生存分析表明,有或无 GIB 的 AMI 患者的 7 天和 15 天生存率没有显著差异(7 天生存率 P =.83,15 天生存率 P =.87)。多变量逻辑回归表明 CHD 是独立危险因素
勒索软件攻击在2024年继续成为头条新闻,攻击者针对SMB业务,政府甚至关键基础设施。诸如Lockbit和BlackCat之类的备受瞩目的团体通过利用诸如双重贬义方法之类的策略来推动界限,黑客不仅锁定您的文件并要求钱来解锁它们 - 除非您付费,否则他们也威胁要与他人共享您的私人或敏感信息。此外,勒索软件即服务(RAAS)平台也降低了入口障碍,即使是新手“业余爱好”黑客也可以发起同样有害后果的攻击。
HIV-1或人类免疫缺陷病毒1型,是一种全球大流行,影响了全球数百万个个体。作为该病毒生命周期的多功能酶,逆转录酶(RT)是药物发现的重要靶标。rt抑制剂主要分为两种类型:非核苷逆转录酶抑制剂(NNRTIS)和核苷逆转录酶抑制剂(NRTIS),尽管其他类别,例如核苷酸逆转录酶抑制剂(NRTIS),也存在。分子对接和药效团建模方法和DFT(密度功能理论)计算是HIV-1药物发现中的重要一步。在当前的研究中,我们在计算机方法中使用了探索新型苯咪唑唑酮(1,3-二氢-2H-2H-Benzimidazol-2-one)衍生物的结合模式。因此,对HIV-1 RT的野生型和突变形式进行了苯甲酰唑酮化合物,包括K103N,Y181C和双突变体K103N/Y181C。分子对接的结果使我们能够选择两种苯甲酰唑酮化合物(L15和L17)作为促进具有良好结合亲和力的抑制剂,不仅与野生型HIV -1(L15:-11.5:-11.5 kcal/mol/mol和L17:-11.4:11.4 kcal/mol),而且还针对Mol Y181和2 Kc/Mol Y181和2 lt Y181。 L17:-10.1 kcal/mol),K103N(L15:-11.5 kcal/mol和L17:-11.6 kcal/mol)和双突变体K103N/Y181C(L15:-11.1 kcal/mol/mol和L17:-9.9 kcal/mol)。此外,设计的配体的特征是基于ADMET(吸收,分布,代谢,排泄和毒性)的理想药代动力学特性。在这项工作结束时,对候选药物(L15和L17)进行了返回研究,以简化其合成。
人类逆转录病毒学是病毒学的一个分支,主要研究感染人类的逆转录病毒,其中最突出的代表是艾滋病毒/艾滋病大流行。自 20 世纪 80 年代发现人类免疫缺陷病毒 (HIV) 以来,人们一直致力于广泛研究,以了解 HIV、其感染机制以及治疗和预防策略。多年来,抗逆转录病毒疗法的发展已将 HIV 从死刑转变为可控制的慢性病。然而,随着科学界在抗击 HIV 方面取得进展,逆转录病毒学研究已扩展到研究其他人类逆转录病毒、发现新的治疗方法,并探索有关逆转录病毒生物学及其在人类疾病中的作用的更广泛问题。本文探讨了人类逆转录病毒学研究的新方向,重点关注新出现的逆转录病毒感染、前沿科学进展以及逆转录病毒相关疾病和治疗的潜在未来前景。逆转录病毒是一种 RNA 病毒家族,它们使用逆转录酶通过 DNA 中间体进行复制。尽管 HIV 因其对公共卫生的重大影响而长期主导着逆转录病毒研究,但其他人类逆转录病毒正成为科学界越来越感兴趣的领域 [1-3]。
1利物浦物流离岸和海洋研究所(LOOM),利物浦约翰·摩尔斯大学工程学院,英国利物浦L3 3AF; o.yuksel@ljmu.ac.uk(O.Y。); a.spiteri@ljmu.ac.uk(A.S。); d.m.hitchmough@ljmu.ac.uk(D.H.); g.v.shagar@ljmu.ac.uk(V.S.); j.wang@ljmu.ac.uk(J.W。)2海军陆战队,海洋学院,ZonguldakBülentEcevit University,Kepez District,Hacıeüp街,Hacıeüp街,第1号:1,67300 Zonguldak,Türkiye3国家研究委员会(CNR)(CNR)(CNR),Marine Engineering Institute of Marine Engineering(Inm) mariacarmela.dipiazza@cnr.it(M.C.D.P. ); marcello.pucci@cnr.it(m.p。) 4 Laskaridis Shipping Co.,Ltd.,5 Xenias str。 和ch。 Trikoupi,基菲西亚,14562雅典,希腊; tsoulakos@laskaridis.com 5 Enki Marine Technology Consultancy,Unit 5 Reliance House,英国利物浦L2 8AA的水街20号; m.armin@enkimarine.co.uk *通信:e.e.blancodavis@ljmu.ac.uk2海军陆战队,海洋学院,ZonguldakBülentEcevit University,Kepez District,Hacıeüp街,Hacıeüp街,第1号:1,67300 Zonguldak,Türkiye3国家研究委员会(CNR)(CNR)(CNR),Marine Engineering Institute of Marine Engineering(Inm) mariacarmela.dipiazza@cnr.it(M.C.D.P.); marcello.pucci@cnr.it(m.p。)4 Laskaridis Shipping Co.,Ltd.,5 Xenias str。 和ch。 Trikoupi,基菲西亚,14562雅典,希腊; tsoulakos@laskaridis.com 5 Enki Marine Technology Consultancy,Unit 5 Reliance House,英国利物浦L2 8AA的水街20号; m.armin@enkimarine.co.uk *通信:e.e.blancodavis@ljmu.ac.uk4 Laskaridis Shipping Co.,Ltd.,5 Xenias str。和ch。Trikoupi,基菲西亚,14562雅典,希腊; tsoulakos@laskaridis.com 5 Enki Marine Technology Consultancy,Unit 5 Reliance House,英国利物浦L2 8AA的水街20号; m.armin@enkimarine.co.uk *通信:e.e.blancodavis@ljmu.ac.uk
• 设计改造并确定哪些改进对单个建筑有意义可能很复杂。 • 许多承包商、能源审计员和建筑业主缺乏新技术和改造方法的经验。 • 整个建筑能源使用数据的访问有限 - 这些数据可以为升级建议提供信息并增强对节约预测的信心。 • 改造可能会对租户造成干扰,使建筑业主不愿意进行改造,尤其是更深层次、更具侵入性的改进。 • 建筑业主无法轻松获得资金来支付改进费用。 • 与更明显的改进相比,能源升级通常不会反映在房地产或保险交易中。该州的市场转型计划旨在解决这些障碍并扩大多户能源升级的价值主张。活动侧重于培养承包商、能源审计员和建筑业主对较新和不太广泛使用的能源升级的熟悉度和专业知识
英国国家健康与临床优化研究所 (NICE) 指南建议所有 12 岁以上的糖尿病患者每年进行 DRP 筛查 [3] 。在 DES 筛查期间,需要从每只眼睛拍摄两张标准数字眼底照片,然后根据英国糖尿病视网膜病变国家筛查计划 (ENSPDR) 分类系统对图像进行分级。被归类为患有“视力威胁性视网膜病变”的个人将被转诊至眼科诊所进行评估。目前,初级保健指南建议全科医生及时识别新诊断的糖尿病患者并将其转诊进行 DES,转诊后三个月内完成,随后进行年度筛查 [4] 。英国公共卫生部委托的糖尿病视网膜病变全科医生筛查 (GP2DRS) 项目将数据从全科医生糖尿病登记册以电子方式直接传输到眼科筛查服务,确保自动识别需要定期筛查的个人 [5] 。自 2022 年起,NHS DES 计划将邀请符合条件的患者进行年度筛查,最低接受率为 75%,目标是超过 85% [6] 。需要密切监测的患者将遵循监测路径,召回间隔为 1、3、6、9 或 12 个月。